首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel macromonomer containing fluorinated units (PHFBMA‐GMA) was synthesized through a two‐step procedure: firstly, hexafluoro‐butyl methacrylate (HFBMA) was polymerized in the presence of functional chain transfer agent 3‐mercaptopropionic acid (MPA) and then the carboxyl acid group terminated polymer was end‐capped with glycidyl methacrylate (GMA). Chemical structures of PHFBMA‐GMA were characterized by gel permeation chromatography, fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR). Subsequently, PHFBMA‐GMA was employed as reactive surface additives added into UV‐cured polyacrylate to modify UV‐curable coatings. It is convenient to control the tail length of the fluorinated segments in this study by adjusting the ratio of initiator and chain transfer agent. The influence of both the concentration and the molecular weight of PHFBMA‐GMA on the surface properties of UV‐cured films was investigated. With increasing both the concentration and the molecular weight of PHFBMA‐GMA, the surface energy of the UV‐cured films decreased. X‐ray photoelectron spectroscopy was employed to characterize and quantify the surface composition and the results confirm the enrichment of fluorinate atoms on the surface. Moreover, the physical properties of UV‐cured films, such as gel content, water absorption, pencil hardness, adhesion, chemical resistance, mechanical properties, optical transmittance, and thermal properties, were also investigated in detail. The novel macromonomer was economical but effective to modify the properties of the UV‐curable coatings. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43116.  相似文献   

2.
First, the second‐generation hyperbranched poly(amine‐ester) (G2‐OH) was successfully prepared by thiol‐ene “click” chemistry. Subsequently, a series of photosensitive hyperbranched oligomers (G2‐ORs) were synthesized by facile modifications of the G2‐OH with acryloyl chloride, methacryloyl chloride, IPDI‐HEA, and IPDI‐HEMA, respectively. The structures of hyperbranched oligomers were characterized by element analysis, FT‐IR, 1H NMR, GPC and viscosity measurement. It was shown that these synthesized oligomers have narrow molecular weight distribution and low intrinsic viscosity at 30°C. UV–vis spectra results showed that the G2‐ORs had sharp absorption bands at around 202 nm. The results of photosensitivities measurement indicated that the G2‐Macr shows the highest photosensitive than other hyperbranched oligomers in the absence of photoinitiator. In addition, these UV‐cured photosensitive G2‐ORs had good thermal properties. The solubilities of the synthesized hyperbranched oligomers were also examined. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Epoxy group‐containing poly(hydroxyethyl methacrylate/glycidyl methacrylate), p(HEMA/GMA), membrane was prepared by UV initiated photopolymerization. The membrane was grafted with chitosan (CH) and some of them were chelated with Fe(III) ions. The CH grafted, p(HEMA/GMA), and Fe(III) ions incorporated p(HEMA/GMA)‐CH‐Fe(III) membranes were used for glucose oxidase (GOD) immobilization via adsorption. The maximum enzyme immobilization capacity of the p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes were 0.89 and 1.36 mg/mL, respectively. The optimal pH value for the immobilized GOD preparations is found to have shifted 0.5 units to more acidic pH 5.0. Optimum temperature for both immobilized preparations was 10°C higher than that of the free enzyme and was significantly broader at higher temperatures. The apparent Km values were found to be 6.9 and 5.8 mM for the adsorbed GOD on p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes, respectively. In addition, all the membranes surfaces were characterized by contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3084–3093, 2007  相似文献   

4.
We have explored two novel methacrylate‐tethering methods for resin‐modified glass‐ionomer cements using 2‐hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GM) as a tethering agent. Both were compared with the published method using 2‐isocyanatoethyl methacrylate (IEM). The tethering reactions were monitored using FTIR spectroscopy. It was found that IEM and HEMA tethering reactions were relatively fast compared with the GM‐tethering, even though all three tethering reactions can be completed within 6 h. The cements composed of the IEM‐tethered polymer showed the highest CS, DTS, and modulus, followed by the cements composed of the HEMA‐ and GM‐tethered polymers, which was attributed to different chemical bonds introduced. It appears that both alternative tethering methods are quite equivalent to IEM‐tethering based on the strength and reaction efficiency. The results suggest that HEMA and GM can be used as promising methacrylate‐tethering alternatives for resin‐modified glass‐ionomer applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Several families of UV-autocurable benzophenone tetracarboxylic dianhydride (BTDA)-based polyester multiacrylate oligomers containing pendant glycidyl methacrylate (GMA) were synthesized and the effects of acrylic functionality and polyol type on their properties were investigated. The obtained autocurable oligomers possess good pot life and are cured rapidly when exposed to ultraviolet (UV) radiation without the addition of photoinitiator or photosensitizer. Different polyols were used to obtain wide range properties of cured multiacrylate oligomers with a glass transition temperature (Tg) range of 84–130°C. A further modification of the multiacrylate oligomers was obtained by mixing them with reactive monomers having different molecular structure and methacrylic functionality.  相似文献   

6.
Acrylate‐functionalized copolymers were synthesized by the modification of poly(butyl acrylate‐co‐glycidyl methacrylate) (BA/GMA) and poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate). 13C‐NMR analyses showed that no glycidyl methacrylate block longer than three monomer units was formed in the BA/GMA copolymer if the glycidyl methacrylate concentration was kept below 20 mol %. We chemically modified the copolymers by reacting the epoxy group with acrylic acid to yield polymers with various glass‐transition temperatures and functionalities. We studied the crosslinking reactions of these copolymers by differential scanning calorimetry to point out the effect of chain functionality on double‐bond reactivity. Films formed from acrylic acrylate copolymer precursors were finally cured under ultraviolet radiation. Network heterogeneities such as pendant chains and highly crosslinked microgel‐like regions greatly influenced the network structure and, therefore, its viscoelastic properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 753–763, 2002  相似文献   

7.
A series of polyimide precursors, poly(amic acid)s, containing propyltrimethoxysliane at two chain ends were prepared from 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( I ) with six commercially available dianhydrides, followed by end‐capping with 3‐aminopropyltrimethoxysilane (APrTMOS). A new class of fluorine‐containing polyimide/silica composite films ( III ) with chemical bonds between the fluorinated polyimide backbone and the silica network has been synthesized from the APrTMOS‐terminated precursors with tetramethoxysilane via the sol‐gel process and thermal cyclodehydration. The resultant hybrid films were light‐colored, flexible, and tough. They had high levels of thermal stability associated with high glass‐transition temperatures (>251°C), 10% weight‐loss temperatures in excess of 527°C, and char yields at 800°C in nitrogen higher than 60%. For a comparative study, the analogous nonfluorinated polyimide/silica hybrid films ( III′ ), based on 4,4′‐bis(4‐aminophenoxy)biphenyl ( I′ ), and the neat fluorinated polyimide films ( IV ), based on diamine I , were also synthesized and characterized. The hybrid films of the fluorinated series III showed a higher transparency and less color intensity when compared with the nonfluorinated III′ analogs. They also revealed a lower refraction index and birefringence than pure polyimides ( IV ). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4046–4052, 2007  相似文献   

8.
Tri(acryloyloxyethyl)phosphate (TAEP) and di(acryloyloxyethyl)ethyl phosphate (DAEEP) were used as reactive‐type flame‐retardant monomers along with commercial epoxy acrylate and polyurethane acrylate oligomers in ultraviolet (UV)‐curable resins. The concentrations of the monomers were varied from 17 to 50 wt %. The addition of the monomers greatly reduced the viscosity of the oligomers and increased the photopolymerization rates of the resins. The flame retardancy and thermal degradation behavior of the UV‐cured films were investigated with the limiting oxygen index (LOI) and thermogravimetric analysis. The results showed that the thermal stability at high temperatures greater than 400°C and the LOI values of the UV‐cured resins, especially those containing epoxy acrylate, were largely improved by the addition of the monomers. The dynamic mechanical thermal properties of the UV‐cured films were also measured. The results showed that the crosslink density increased along with the concentrations of the monomers. However, the glass‐transition temperature decreased with an increasing concentration of DAEEP because of the reduction in the rigidity of the cured films, whereas the glass‐transition temperature increased with the concentration of TAEP because of the higher crosslink density of the cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 185–194, 2005  相似文献   

9.
A series of novel photo‐crosslinkable fluorinated poly(phthalazinone ether)s containing 1,1‐diphenylethylene segments in the polymer main chain, used for optical waveguide materials, were synthesized by polycondensation reaction of decafluorobiphenyl with a mixture of 4‐(4‐hydroxylphenyl)(2H)‐phthalazin‐1‐one (DHPZ), 4,4‐(hexafluoroisopropylidene)diphenol and 1,1‐bis(4‐hydroxyphenyl)ethylene (BHPE) as co‐reactant. The feed ratio of DHPZ to total bisphenols varied from 0 to 80 mol%, while that of BHPE remained at 20 mol% for all polymers. The obtained copolymers show good solubility in some common polar organic solvents. The resulting polymers were photo‐crosslinked after UV irradiation for 10 min in the presence of a photoinitiator. The cured polymers show good chemical resistance, high thermal stability (temperatures of 1% mass loss after curing of 472–496 °C under nitrogen) and high glass transition temperatures (160–249 °C) which could be further increased by about 10 °C after photochemical crosslinking. By adjusting the copolymerizing bisphenol content, the refractive indices of transverse electric and transverse magnetic modes (at 1550 nm) of films of the polymers were exactly tuned in the range 1.5029–1.5661 and 1.4950–1.5502, respectively. The propagation losses of the cured films were measured and found to be less than 0.3 dB cm?1 at 1550 nm, indicating the promise of these materials for passive optical waveguide devices. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
The influence of the reactive endgroup on the synthesis, cure behavior and network properties of thermosetting polyetherimides was investigated. Reactive phenylethynyl, ethynyl and maleimide terminated etherimide oligomers were prepared and characterized. Optimal reaction conditions were established to produce fully endcapped oligomers with imidized structures and controlled molecular weight. The phenylethynyl and ethynyl endcapped systems were synthesized by ester-acid methods. The maleimide endcapped system utilized an amic-acid route. Phenylethynyl endcapped oligomers had good processibility and were thermally cured at high temperatures (350–380°C). The networks exhibited good thermal and hydrolytic stability and good adhesion strength, and are candidates for “primary'' bonding adhesives. In contrast, more reactive ethynyl and maleimide endcapped systems were prepared as “secondary'' bonding materials, which could be cured at temperatures lower than that of the T g of the primary structure. Lap shear test results obtained from NMP-cast/methanol-extracted scrim-cloth-supported precursors confirmed that good adhesion to titanium at both room temperature and at 177°C was achieved when cured at 250°C-280°C. High glass transition temperatures and good thermal stability were achieved as determined by thermal analysis (DSC, TGA and DMA). Solvent extraction measurements confirmed that very high gel fractions were obtained, which is consistent with good chemical resistance.

The influence of molecular weight between crosslinks (Mc) on thermal and mechanical behavior was also investigated for 2,3,5,7 and 10k initial M n values. Lower molecular weight oligomers exhibited lower T g and cure temperatures, but higher cured network crosslink densities afforded higher T g and higher gel fractions, but with reduced toughness.  相似文献   

11.
A series of UV-autocurable 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and benzophenone tetracarboxylic acid (BTAc)-based multiacrylate resins containing pendant glycidyl methacrylate (GMA) or glycidyl acrylate (GA) and 2-hydroxyethyl acrylate (HEA) or 2-hydroxyethyl methacrylate (HEMA) were synthesized. The effects of the acrylic functional groups, the moles of GMA, and the molar ratio of HEMA/HEA on their properties were investigated. The prepared autocurable resins are cured rapidly when exposed to UV or sunlight radiation without addition of any photoinitiator or Photosensitizer and the acrylate-type resin resulted in a lower thermal curing temperature and a fast curing rate. Increasing the moles of GMA or the molar ratio of HEMA/HEA on reaction leads to a higher cross-linking density and resulted in film with a higher Young's modulus, breaking strength, and lower elongation. The methacrylate-type resin cured to a very hard, but brittle film with a higher Young's modulus and lower elongation. However, the acrylate-type resin cured to a hard tough film with a lower Young's modulus and higher elongation. The cured methacrylate-type resin results in a lower weight loss at temperature below 300°C due to a higher cross-linking density and lower residual weight percent at 600°C due to the lower percent of benzene rings in the resin. The film properties of the resins coated on steel plates were also investigated. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Fluoroalkyl end‐capped homo‐ and co‐ oligomers containing silsesquioxane segments were prepared by the reactions of fluoroalkanoyl peroxides with the corresponding methacrylate monomer‐bearing silsesquioxane unit (Si‐MMA) and comonomers such as N,N‐dimethylacrylamide (DMAA) and acrylic acid (ACA). These new fluorinated Si‐MMA oligomers were easily soluble in various organic solvents and were able to reduce the surface tension of m‐xylene effectively. The modified poly(methyl methacrylate) [PMMA] and glass surface treated with fluorinated Si‐MMA homo‐oligomers exhibited a strong oleophobicity, although these fluorinated oligomers possess high oleophilic silsesquioxane segments. In contrast, the modified PMMA surface treated with fluorinated Si‐MMA–DMAA cooligomers exhibited a good hydrophilicity with a strong oleophobicity. In a series of fluorinated Si‐MMA oligomers, fluorinated Si‐MMA homo‐oligomers had a relatively high thermal stability. Therefore, these fluoroalkyl end‐capped Si‐MMA oligomers are suggested to have high potential for new functional materials through their unique properties such as a high solubility and surface active properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3486–3493, 2002  相似文献   

13.
The dimethacrylate reactive diluent (HEMA‐DDSA), a long‐side‐chain‐containing reactive diluent, was prepared by reacting 2‐dodecen‐1‐ylsuccinic anhydride with two equivalents of hydroxyethyl methacrylate. Its structure was characterized by IR and 1H NMR spectroscopy. This new diluent was added into the formulation of UV‐curable epoxy acrylate networks. Results show that the formulation with the addition of HEMA‐DDSA has massively reduced viscosity and shows several attractive properties of epoxy acrylate oligomers. The mechanical resistance of the films is dramatically enhanced with the incorporation of long alkyl groups derived from HEMA‐DDSA, the plastic deformation zone expands, thus decreasing the inner stress of the polymer structure. Moreover, the cured coatings have a higher glass transition temperature as the percentage of HEMA‐DDSA is increased up to 5 wt%. Due to the excellent integrated performance of the polymeric films, HEMA‐DDSA proved to be an effective reactive diluent, which is of potential interest for applications in high performance materials. © 2016 Society of Chemical Industry  相似文献   

14.
Postconsumer poly(ethylene terephthalate) waste bottles were glycolyzed as precursors of unsaturated polyester resin (UPR) and their montmorillonite (MMT)‐filled nanocomposites. The glycolysis product (hydroxyl‐terminated oligomers) was converted into UPR with various acid contents. These resins were miscible with styrene and could be cured with peroxide initiators to produce thermosetting unsaturated polyester (UP). Nanocomposites composed of UP matrix and organically modified clay were prepared by in situ polymerization. These were characterized for thermal and dynamic mechanical properties. Transmission electron microscopy was also used to study the morphology at different length scales and showed the nanocomposites to be compromised of a random dispersion of intercalated/exfoliated aggregates throughout the matrix. With an increase in unsaturated acid content (for a fixed content of clay), the value of storage modulus varied from 2737 to 4423 MPa. The glass‐transition temperatures of these nanocomposites ranged from 54 to 78°C, and the crosslink density varied from 3.70 × 105 to 5.72 × 105 mol/m3. The X‐ray diffraction (XRD) of modified MMT exhibited a peak that vanished completely in the polymer nanocomposites. Thus, the XRD results apparently indicated a distortion of the platy layers of nanofiller in the UP nanocomposites. The nanocomposites showed higher modulus values (2737–4423 MPa) compared to the pristine polymer (2693 MPa). From thermogravimetric analysis, all of the nanocomposites were stable up to 200°C and showed a two‐stage degradation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
2,5‐ Dichlorophenyl acrylate (DPA)‐co‐glycidyl methacrylate (GMA) polymers having five different compositions were synthesized in 1,4‐dioxane using benzoyl peroxide as a free‐radical initiator at 70 ± 0.5°C. Using 1H‐NMR spectroscopy, the composition of the two monomers in the copolymers was calculated by comparing the integral values of the aromatic and aliphatic proton peaks. The reactivity ratios were calculated by Fineman–Ross (r1 = 0.31 and r2 = 1.08), Kelen–Tudos (r1 = 0.40 and r2 = 1.15), and extended Kelen–Tudos (r1 = 0.39 and r2 = 1.16) methods. The nonlinear error‐in‐variables model was used to compare the reactivity ratios. The copolymers were characterized by 1H and proton decoupled 13C‐NMR spectroscopes. Gel permeation chromatography was performed for estimating the Mw and Mn and Mw/Mn of the poly(DPA) and copolymers (DPA‐co‐GMA: 09 : 91 and 50 : 50). Thermal stability of the homo‐ and copolymers was estimated using TGA [poly(DPA) > DPA‐co‐GMA (50 : 50) > DPA‐co‐GMA (09:91)], while DSC was utilized for determining the glass transition temperature. Tg increased with increased DPA content in the copolymer. The 50 : 50 mol % copolymer was chosen for curing with diethanolamine in chloroform. The cured resins were tested for the adhesive properties on leather at different temperatures (50, 90, 100, and 110°C). The resin cured at 50 °C exhibited a maximum peel strength of 1.6 N/mm, revealing a good adhesive behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1167–1174, 2006  相似文献   

16.
2‐Hydroxyethyl methacrylate (HEMA) solution (1–10 wt %) was prepared in methanol and phosphate glass fibers were immersed in that solution for 5 min before being cured (irradiation time: 30 min) under UV radiation. Maximum polymer loading (HEMA content) was found for the 5 wt % HEMA solution. Degradation tests of the fibers in aqueous medium at 37°C suggested that the degradation of the HEMA‐treated fibers was lower than that of the untreated fibers. X‐ray photoelectron spectroscopy revealed that HEMA was present on the surface of the fibers. Using 5 wt % HEMA‐treated fibers, poly(caprolactone) matrix unidirectional composites were fabricated by in situ polymerization and compression molding. For in situ polymerization, it was found that 5 wt % HEMA‐treated fiber‐based composites had higher bending strength (13.8% greater) and modulus (14.0% greater) than those of the control composites. For compression molded composites, the bending strength and modulus values for the HEMA‐treated samples were found to be 27.0 and 31.5% higher, respectively, than the control samples. The tensile strength, tensile modulus, and impact strength of the HEMA composites found significant improvement than that of the untreated composites. The composites were investigated by scanning electron microscopy after 6 weeks of degradation in water at 37°C. It was found that HEMA‐treated fibers inside the composite retained much of their original integrity while the control samples degraded significantly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of co‐polyimide/attapulgite (co‐PI/AT) nanocomposites have been successfully fabricated from anhydride‐terminated polyimide (PI) and γ‐aminopropyltriethoxysilane (APTES)‐modified fibrous attapulgite (AT). Co‐PI was prepared from 4,4′‐diaminodiphenyl ether (ODA), 4,4′‐oxydiphthalic anhydride (ODPA), and 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) by using the method of chemical imidization. Different amount of AT (0, 1, 3, 5, 7 wt%) were introduced into co‐PI via strong covalent interactions between terminal anhydride and amino groups. The properties of co‐PI/AT nanocomposites such as morphology, thermal stability, mechanical properties, and UV transparency were investigated to illustrate the contribution of the introduction of AT into the PI matrix. FTIR spectra and SEM images revealed that network structures between co‐PI and AT are formed, which endowed the nanocomposites with outstanding thermal and mechanical properties. The co‐PI/AT nanocomposites exhibited excellent thermal and thermo‐oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature increasing to the ranges of 502–510°C and 555–562°C from 480°C to 526°C for the pristine co‐PI, respectively. The glass transition temperatures of these co‐PI/AT nanocomposites increased to the range of 231–238°C from 222°C for pure co‐PI. The co‐PI/AT nanocomposites films were found to be transparent, flexible, and tough. By incorporating 5 wt% AT into the co‐PI matrix, the tensile strength, elongation at break, and Young's modulus of the co‐PI/AT nanocomposites reached 110.7 MPa, 14.5%, and 1.2 GPa, respectively, which are 50%, 120%, and 80% increased compared with the values of pristine PI. POLYM. COMPOS., 35:86–96, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Perfluoropolyether (PFPE) structures can be functionalized with acrylic groups using appropriate hydrogenated acrylic monomers: the macromers obtained are highly reactive under UV irradiation, and fluorinated polymers can be obtained. In the first part of this work is described the synthesis of new PFPE (meth)acrylic oligomers by extending OH‐terminated fluorinated chains with urethane groups and reactive acrylic functions. The photopolymerization reaction of each product is then reported followed by the characterisation of the main thermal, mechanical and surface properties of UV‐cured coatings. The polymers have good thermal resistance and fair mechanical and chemical resistance. More interestingly they show very low refractive index and low surface tension. For these latter properties the products can be advantageously used in highly demanding applications such as photonic devices and nano‐patterning. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Three novel bismaleimide monomers (MBA‐BMI, EBA‐BMI, and PBA‐BMI) with unsymmetrical backbone and different pendant groups were synthesized using asymmetric diamine and maleic anhydride as the precursors. The prepared bismaleimide monomers show good solubility in common organic solvents such as acetone and tetrahydrofuran. The EBA‐BMI melt treated at 180 °C also shows low viscosity about 190–934 mPa s at the temperature range of 160–139 °C below its melting point (166 °C). In addition to the good processability, all three cured bismaleimides show high storage moduli at high temperatures (2.0 GPa at 400 °C), high glass transition temperatures over 400 °C, and good thermal stability with the 5% weight loss temperatures around 470 °C under nitrogen atmosphere. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43491.  相似文献   

20.
A series of novel polyarylethersulfone (AB) n block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide‐terminated and fluorine‐terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, 13C NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 °C) and high glass transition temperatures, and have a wide melt‐processing temperature range. They may become a new class of mouldable high performance thermoplastics. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号