首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study attempts to apply the general equilibrium model of stock index futures with both stochastic market volatility and stochastic interest rates to the TAIFEX and the SGX Taiwan stock index futures data, and compares the predictive power of the cost of carry and the general equilibrium models. This study also represents the first attempt to investigate which of the five volatility estimators can enhance the forecasting performance of the general equilibrium model. Additionally, the impact of the up‐tick rule and other various explanatory factors on mispricing is also tested using a regression framework. Overall, the general equilibrium model outperforms the cost of carry model in forecasting prices of the TAIFEX and the SGX futures. This finding indicates that in the higher volatility of the Taiwan stock market incorporating stochastic market volatility into the pricing model helps in predicting the prices of these two futures. Furthermore, the comparison results of different volatility estimators support the conclusion that the power EWMA and the GARCH(1,1) estimators can enhance the forecasting performance of the general equilibrium model compared to the other estimators. Additionally, the relaxation of the up‐tick rule helps reduce the degree of mispricing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

3.
This study is the first to examine the impacts of overnight and intraday oil futures cross-market information on predicting the US stock market volatility the high-frequency data. In-sample estimations present that high overnight oil futures RV can lead to high RV of the S&P 500. Moreover, negative overnight returns are more powerful than positive components, implying the existence of the leverage effect. From statistical and economic perspectives, out-of-sample results indicate that the decompositions of overnight oil futures and intraday RVs, based on signed intraday returns, can significantly increase the models' predictive ability. Finally, when considering the US stock market overnight effect, the decompositions are still useful to predict volatility, especially during high US stock market fluctuations and high and low EPU states.  相似文献   

4.
In this paper we study the performance of the GARCH model and two of its non-linear modifications to forecast weekly stock market volatility. The models are the Quadratic GARCH (Engle and Ng, 1993) and the Glosten, Jagannathan and Runkle (1992) models which have been proposed to describe, for example, the often observed negative skewness in stock market indices. We find that the QGARCH model is best when the estimation sample does not contain extreme observations such as the 1987 stock market crash and that the GJR model cannot be recommended for forecasting.  相似文献   

5.
This paper introduces a novel generalized autoregressive conditional heteroskedasticity–mixed data sampling–extreme shocks (GARCH-MIDAS-ES) model for stock volatility to examine whether the importance of extreme shocks changes in different time ranges. Based on different combinations of the short- and long-term effects caused by extreme events, we extend the standard GARCH-MIDAS model to characterize the different responses of the stock market for short- and long-term horizons, separately or in combination. The unique timespan of nearly 100 years of the Dow Jones Industrial Average (DJIA) daily returns allows us to understand the stock market volatility under extreme shocks from a historical perspective. The in-sample empirical results clearly show that the DJIA stock volatility is best fitted to the GARCH-MIDAS-SLES model by including the short- and long-term impacts of extreme shocks for all forecasting horizons. The out-of-sample results and robustness tests emphasize the significance of decomposing the effect of extreme shocks into short- and long-term effects to improve the accuracy of the DJIA volatility forecasts.  相似文献   

6.
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed generalized autoregressive conditional heteroskedasticity–mixed data sampling approach, which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for Crude Oil (WTI and Brent), Gold, Silver and Platinum, as well as a commodity index, our results show the necessity for disentangling the short-term and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of global real economic activity as well as changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.  相似文献   

8.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

9.
The aim of this paper is to propose a new methodology that allows forecasting, through Vasicek and CIR models, of future expected interest rates based on rolling windows from observed financial market data. The novelty, apart from the use of those models not for pricing but for forecasting the expected rates at a given maturity, consists in an appropriate partitioning of the data sample. This allows capturing all the statistically significant time changes in volatility of interest rates, thus giving an account of jumps in market dynamics. The new approach is applied to different term structures and is tested for both models. It is shown how the proposed methodology overcomes both the usual challenges (e.g., simulating regime switching, volatility clustering, skewed tails) as well as the new ones added by the current market environment characterized by low to negative interest rates.  相似文献   

10.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms.  相似文献   

11.
In recent years, considerable attention has focused on modelling and forecasting stock market volatility. Stock market volatility matters because stock markets are an integral part of the financial architecture in market economies and play a key role in channelling funds from savers to investors. The focus of this paper is on forecasting stock market volatility in Central and East European (CEE) countries. The obvious question to pose, therefore, is how volatility can be forecast and whether one technique consistently outperforms other techniques. Over the years a variety of techniques have been developed, ranging from the relatively simple to the more complex conditional heteroscedastic models of the GARCH family. In this paper we test the predictive power of 12 models to forecast volatility in the CEE countries. Our results confirm that models which allow for asymmetric volatility consistently outperform all other models considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses several questions surrounding volatility forecasting and its use in the estimation of optimal hedging ratios. Specifically: Are there economic gains by nesting time‐series econometric models (GARCH) and dynamic programming models (therefore forecasting volatility several periods out) in the estimation of hedging ratios whilst accounting for volatility in the futures bid–ask spread? Are the forecasted hedging ratios (and wealth generated) from the nested bid–ask model statistically and economically different than standard approaches? Are there times when a trader following a basic model that does not forecast outperforms a trader using the nested bid–ask model? On all counts the results are encouraging—a trader that accounts for the bid–ask spread and forecasts volatility several periods in the nested model will incur lower transactions costs and gain significantly when the market suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The existing contradictory findings on the contribution of trading volume to volatility forecasting prompt us to seek new solutions to test the sequential information arrival hypothesis (SIAH). Departing from other empirical analyses that mainly focus on sophisticated testing methods, this research offers new insights into the volume-volatility nexus by decomposing and reconstructing the trading activity into short-run components that typically represent irregular information flow and long-run components that denote extreme information flow in the stock market. We are the first to attempt at incorporating an improved empirical mode decomposition (EMD) method to investigate the volatility forecasting ability of trading volume along with the Heterogeneous Autoregressive (HAR) model. Previous trading volume is used to obtain the decompositions to forecast the future volatility to ensure an ex ante forecast, and both the decomposition and forecasting processes are carried out by the rolling window scheme. Rather than trading volume by itself, the results show that the reconstructed components are also able to significantly improve out-of-sample realized volatility (RV) forecasts. This finding is robust both in one-step ahead and multiple-step ahead forecasting horizons under different estimation windows. We thus fill the gap in studies by (1) extending the literature on the volume-volatility linkage to EMD-HAR analysis and (2) providing a clear view on how trading volume helps improve RV forecasting accuracy.  相似文献   

14.
Effectively explaining and accurately forecasting industrial stock volatility can provide crucial references to develop investment strategies, prevent market risk and maintain the smooth running of national economy. This paper aims to discuss the roles of industry‐level indicators in industrial stock volatility. Selecting Chinese manufacturing purchasing managers index (PMI) and its five component PMI as the proxies of industry‐level indicators, we analyze the contributions of PMI on industrial stock volatility and further compare the volatility forecasting performances of PMI, macroeconomic fundamentals and economic policy uncertainty (EPU), by constructing the individual and combination GARCH‐MIDAS models. The empirical results manifest that, first, most of the PMI has significant negative effects on industrial stock volatility. Second, PMI which focuses on the industrial sector itself is more helpful to forecast industrial stock volatility compared with the commonly used macroeconomic fundamentals and economic policy uncertainty. Finally, the combination GARCH‐MIDAS approaches based on DMA technique demonstrate more excellent predictive abilities than the individual GARCH‐MIDAS models. Our major conclusions are robust through various robustness checks.  相似文献   

15.
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV.  相似文献   

17.
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper examines volatility linkages and forecasting for stock and foreign exchange markets from a novel perspective by utilizing a bivariate Markov-switching multifractal model that accounts for possible interactions between stock and foreign exchange markets. Examining daily data from major advanced and emerging nations, we show that generalized autoregressive conditional heteroskedasticity models generally offer superior volatility forecasts for short horizons, particularly for foreign exchange returns in advanced markets. Multifractal models, on the other hand, offer significant improvements for longer horizons, consistently across most markets. Finally, the bivariate multifractal model provides superior forecasts compared to the univariate alternative in most advanced markets and more consistently for currency returns, while its benefits are limited in the case of emerging markets.  相似文献   

19.
Forecasts of interest rates for different maturities are essential for forecasts of asset prices. The growth of derivatives markets coupled with the development of complex theories of the term structure of interest rates have provided forecasters with a rich array of variables for predicting interest rates and yield spreads. This paper extends previous work on forecasting future interest rates and yield spreads using market data for T-bills, T-Notes, and Treasury Bond spot and futures contracts. The information conveyed in technical models that use market data is also assessed, using a recent innovation in interest rate modelling, the maximum smoothness approach. Forecasts from this model are compared with predicted yields and yield spreads derived from futures prices as well as with those of the random walk model. The results show some evidence of market segmentation, with more arbitrage evident for nearby maturities. Market participants appear to show a greater degree of consensus on short-term interest rates than on longer-term interest rates. There is some indication that forecasts from the futures markets are marginally better than those provided by those of the maximum-smoothness approach, consistent with the informational advantages of futures markets. Finally, futures and maximum-smoothness market forecasts are shown to outperform those of the random walk model.© 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Studies have shown that small stock returns can be partially predicted by the past returns of large stocks (cross‐correlations), while a larger body of literature has shown that macroeconomic variables can predict future stock returns. This paper assesses the marginal contribution of cross‐correlations after controlling for predictability inherent in lagged macroeconomic variables. Macroeconomic forecasting models generate trading rule profits of up to 0·431% per month, while the inclusion of cross‐correlations increases returns to 0·516% per month. Such results suggest that cross‐correlations may serve as a proxy for omitted macroeconomic variables in studies of stock market predictability. Macroeconomic variables are more important than cross‐correlations in forecasting small stock returns and encompassing tests suggest that the small marginal contribution of cross‐correlations is not statistically significant. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号