首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The steroidal module of the Athlete Biological Passport (ABP) aims to detect doping with endogenous steroids, e.g. testosterone (T), by longitudinally monitoring several biomarkers. These biomarkers are ratios combined into urinary concentrations of testosterone and metabolically related steroids. However, it is evident after 5 years of monitoring steroid passports that there are large variations in the steroid ratios complicating its interpretation. In this study, we used over 11000 urinary steroid profiles from Swedish and Norwegian athletes to determine both the inter‐ and intra‐individual variations of all steroids and ratios in the steroidal passport. Furthermore, we investigated if the inter‐individual variations could be associated with factors such as gender, type of sport, age, time of day, time of year, and if the urine was collected in or out of competition. We show that there are factors reported in today's doping tests that significantly affect the steroid profiles. The factors with the largest influence on the steroid profile were the type of sport classification that the athlete belonged to as well as whether the urine was collected in or out of competition. There were also significant differences based on what time of day and time of year the urine sample was collected. Whether these significant changes are relevant when longitudinally monitoring athletes in the steroidal module of the ABP should be evaluated further.  相似文献   

2.
An analytical procedure based on ultra‐performance liquid chromatography‐mass spectrometry was developed to screen and to confirm dutasteride and its metabolites in human urine. Sample preparation included an enzymatic hydrolysis followed by solid‐phase extraction using the strong cation exchange cartridges OASIS® MCX. The chromatographic separation was carried out on C18 column, employing as mobile phases ultra purified water and acetonitrile, both containing 0.1% formic acid. Detection was achieved using a triple quadrupole as a mass spectrometric analyzer, with positive ion electrospray ionization and multiple reaction monitoring as acquisition mode. The analytical procedure developed was validated according to ISO 17025 and World Anti‐Doping Agency guidelines. The extraction efficiency was estimated to be greater than 75% for both dutasteride and its hydroxylated metabolites. Detection capability was determined in the range of 0.1–0.4 ng/mL. Specificity and repeatability of the relative retention times (CV% < 0.5) and of the relative abundances of the characteristic ion transitions selected (CV% < 10) were confirmed to be fit for purpose to ensure the unambiguous identification of dutasteride and its metabolites in human urine. The developed method was used to characterize the urinary excretion profile of dutasteride after both chronic and acute administration of therapeutic doses. After chronic administration, dutasteride and its hydroxylated metabolites were easily detected and confirmed. After acute administration, instead, only the two hydroxylated metabolites were detected for 3–4 days.  相似文献   

3.
Abstract: During a study aimed at generating a bispecific molecule between BN antagonist (d ‐Trp6,Leu13‐ψ[CH2NH]‐Phe14)BN6‐14 (Antag1) and mAb22 (anti‐FcγRI), we attempted to cross‐link the two molecules by introducing a thiol group into Antag1 via 2‐iminothiolane (2‐IT, Traut's reagent). We found that reaction of Antag1 with 2‐IT, when observed using HPLC, affords two products, but that the later eluting peptide is rapidly transformed into the earlier eluting peptide. To understand what was occurring we synthesized a model peptide, d ‐Trp‐Gln‐Trp‐NH2 (TP1), the N‐terminal tripeptide of Antag1. Reaction of TP1 with 2‐IT for 5 min gave products 1a and 3a ; the concentration of 1a decreased with reaction time, whereas that of 3a increased. Thiol 1a , the expected Traut product, was identified by collecting it in a vial containing N‐methylmaleimide and then isolating the resultant Michael addition product 2a , which was confirmed by mass spectrometry. Thiol 1a is stable at acidic pH, but is unstable at pH 7.8, cyclizes and loses NH3 to give N‐TP1‐2‐iminothiolane ( 3a ), ES‐MS (m/z) [602.1 (M+H)+], as well as regenerating TP1. Repeat reaction with Antag1 and 2‐IT allowed us to isolate N‐Antag1–2‐iminothiolane ( 3b ), FAB‐MS (m/z) [1212.8 (M+H)+] and trap the normal Traut product 1b as its N‐methylmaleimide Michael addition product 2b , ES‐MS (m/z) [1340.8 (M+H)+]. Thiol 1b is also stable at acidic pH, but when neutralized is unstable and cyclizes, forming 3b and Antag1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号