首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of halogenated (F, Cl, Br, I), pyrimido and diazepino homologs of mazindol were prepared and evaluated for their ability to displace [3H]WIN 35,428 binding and to inhibit uptake of [3H]dopamine (DA) in rat striatal tissue. All of the compounds except for the 2'-chloro (6) and 2'-bromo (16) analogs of mazindol displaced [3H]WIN 35,428 binding and inhibited [3H]DA uptake more effectively than (R)-cocaine. Structure-activity studies indicated that best inhibition of [3H]WIN 35,428 binding occurred in the imidazo series with compounds containing one or two Cl or Br atoms in the 3'- or 4'-position of the free phenyl group. Replacement of the imidazo ring by a pyrimido or diazepino ring enhanced binding inhibition. The most potent inhibitors of [3H]WIN 35,428 binding and [3H]DA uptake were 6-(3'-chlorophenyl)-2,3,4,6-tetrahydropyrimido[2,1-alpha]isoind ol-6-ol (23; IC50 1.0 nM; 8 x mazindol) and 7-(3',4'-dichlorophenyl)-2,3,4,5-tetrahydro-7H-diazepino[2,1-alpha ]isoindol-7-ol (28; IC50 0.26 nM; 32 x mazindol), respectively. No significant differences was found between binding and uptake inhibition. Mazindol and the pyrimido and diazepino homologs 24 and 27 showed a selectivity for the DA uptake over the serotonin (5-HT) uptake site of 5-, 250-, and 465-fold, respectively, and displayed weak or no affinity for a variety of neurotransmitter receptor sites.  相似文献   

2.
Although much evidence suggests that the brain dopamine transporter (DAT) is susceptible to dopaminergic regulation, only limited information is available for the vesicular monoamine transporter (VMAT2). In the present investigation, we used a chronic, unlimited-access, cocaine self-administration paradigm to determine whether brain levels of VMAT2, as estimated using [3H]dihydrotetrabenazine (DTBZ) binding, are altered by chronic exposure to a dopamine uptake blocker. Previously, we showed that striatal and nucleus accumbens DAT levels, as estimated by [3H]WIN 35,428 and [3H]GBR 12,935 binding, are altered markedly using this animal model (Wilson et al., 1994). However, in sequential sections from the same animals, [3H]DTBZ binding was normal throughout the entire rostrocaudal extent of the basal ganglia (including striatum and nucleus accumbens), cerebral cortex, and diencephalon, as well as in midbrain and brainstem monoamine cell body regions, both on the last day of cocaine access and after 3 weeks of drug withdrawal. These data provide additional evidence that VMAT2, unlike DAT, is resistant to dopaminergic regulation.  相似文献   

3.
The in vivo potency of euphorigenic doses of intravenous cocaine for displacing [123I]beta-CIT ([123I]2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane) binding to striatal dopamine transporters (DAT) was assessed in human cocaine addicts using single photon emission computed tomography (SPECT). Cocaine-dependent subjects (n = 6) were injected with [123I]beta-CIT and imaged 24 h later under equilibrium conditions. Sequential cocaine infusions (0.28 +/- 0.03 and 0.56 +/- 0.07 mg/kg) produced significant (P < 0.0005) reductions in the specific to non-specific equilibrium partition coefficient, V3" (6 +/- 6 and 17 +/- 3%), a measure proportional to DAT binding potential. Regression analysis of the logit transformed data enabled reliable determination of the Hill coefficient (0.51) and 50% displacement (ED50) dose of cocaine (2.8 mg/kg). These preliminary data suggest that cocaine produces behavioral effects in humans at measurable levels of DAT occupancy.  相似文献   

4.
It has been suggested that cocaine and mazindol bind to separate sites on the dopamine transporter. In the present study, we address this issue by examining the inhibition by mazindol of the binding of [3H]WIN 35,428 ([3H]2beta-carbomethyoxy-3beta-(4-fluorophenyl)-tropane), a phenyltropane analog of cocaine, and the inhibition by WIN 35,428 of [3H]mazindol binding to the cloned human dopamine transporter expressed in C6 glioma cells. The design involved the construction of inhibition curves at six widely different radioligand levels, enabling the distinction between the nonlinear hyperbolic competition (i.e., negative allosteric) model and the competitive (i.e., mutually exclusive binding) model. Nonlinear computer curve-fitting analysis indicated no difference in the goodness of fit between the two models; the negative allosteric model indicated an extremely high allosteric constant of approximately > or = 100, which practically equates to the competitive model. The present results suggest that complex interactions reported between cocaine and mazindol in inhibiting dopamine transport are beyond the level of ligand recognition.  相似文献   

5.
To improve our understanding of structure-function relationships for neurotransmitter transporters, we performed site-directed mutagenesis of the rat dopamine transporter (DAT) and assessed the functions of the mutants in transiently-expressing COS cells. Tyrosine-533 of rat DAT lies in the 11th transmembrane region, where the corresponding amino acid of human DAT is phenylalanine. Alanine substitution of tyrosine-533 (Y533A) conferred an increased affinity for 1-methyl-4-phenylpyridinium (MPP+). Phenylalanine substitution of tyrosine-533 (Y533F) increased the velocity of MPP+ uptake but decreased DAT's affinity for MPP+. Cocaine's potency in inhibiting dopamine uptake was unchanged with Y533A, but increased with Y533F. Differences in the uptake kinetics and inhibitory potency of cocaine between rat and human DATs were similar to the differences observed between the wild-type and Y533F mutants DATs. Tyrosine-533 may be important for the DAT function and for species differences in transporter functions, including differential sensitivities to cocaine and 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) in humans and rats.  相似文献   

6.
The effects of substrates m-tyramine and beta-phenethylamine, as well as cocaine, on the DA efflux from a cell line stably expressing the human norepinephrine transporter (hNET) were investigated by using rotating disk electrode voltammetry. Both the substrates and cocaine induced apparent DA efflux in a concentration-dependent manner. Their EC50 values for inducing DA efflux were similar to their IC50 values for inhibiting DA uptake. The substrate-induced DA efflux was inhibited by various NET blockers, enhanced by raising the internal [Na+] with Na+,K+-ATPase inhibition, but was insensitive to membrane potential-altering agents valinomycin, veratridine, and high [K+]. The initial rate of m-tyramine-induced DA efflux was related to preloaded [DA] in a manner defined by a Michaelis-Menten expression. In contrast, DA efflux in the presence of cocaine displayed a much slower efflux rate, lower efficacy, was not stimulated by elevated internal [Na+], and was nonsaturable with preloaded [DA]. Single exponential kinetic analysis of the entire time course of the DA efflux showed that the apparent first-order rate constant for m-tyramine-induced DA efflux declined with increased preloaded [DA], whereas that for the DA efflux in the presence of cocaine was unchanged with varying preloaded [DA]. These results suggest that the substrates stimulate the NET-dependent DA efflux by increasing the accessibility of the NET to internal DA, whereas cocaine "uncovers" NET-independent DA efflux by reducing the accessibility of diffused/leaked external DA to the NET.  相似文献   

7.
Experiments were conducted to determine how (-)-cocaine and S(+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m-tyramine and S(+)-amphetamine caused release of dopamine from intracellular stores at concentrations > or = 12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m-tyramine and S(+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S(+)-Amphetamine and m-tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (-)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site (K(int) = 583 nM). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (-)-cocaine suggest that the (-)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (-)-cocaine binding may be developed to block (-)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.  相似文献   

8.
Electrophysiological and pharmacological studies of a cloned human dopamine transporter (hDAT) were undertaken to investigate the mechanisms of transporter function and the actions of drugs at this target. Using two-electrode voltage-clamp techniques with hDAT-expressing Xenopus laevis oocytes, we show that hDAT can be considered electrogenic by two criteria. (1) Uptake of hDAT substrates gives rise to a pharmacologically appropriate "transport-associated" current. (2) The velocity of DA uptake measured in oocytes clamped at various membrane potentials was voltage-dependent, increasing with hyperpolarization. Concurrent measurement of transport-associated current and substrate flux in individual oocytes revealed that charge movement during substrate translocation was greater than would be expected for a transport mechanism with fixed stoichiometry of 2 Na+ and 1 Cl- per DA+ molecule. In addition to the transport-associated current, hDAT also mediates a constitutive leak current, the voltage and ionic dependencies of which differ markedly from those of the transport-associated current. Ion substitution experiments suggest that alkali cations and protons are carried by the hDAT leak conductance. In contrast to the transport-associated functions, the leak does not require Na+ or Cl-, and DAT ligands readily interact with the transporter even in the absence of these ions. The currents that hDAT mediates provide a functional assay that readily distinguishes the modes of action of amphetamine-like "DA-releasing" drugs from cocaine-like translocation blockers. In addition, the voltage dependence of DA uptake suggests a mechanism through which presynaptic DA autoreceptor activation may accelerate the termination of dopaminergic neurotransmission in vivo.  相似文献   

9.
10.
The role of protein kinase C (PKC) was examined in the regulation of dopamine transport in C6 glioma cells stably expressing the human dopamine transporter. The PKC activating phorbol esters phorbol 12-myristate 13-acetate (PMA) and 4 beta-12,13-dibutyrate phorbol-ester (PDBu) inhibited [3H]dopamine uptake concentration dependently. These effects were attenuated by the PKC inhibitor staurosporine but were unaltered by another inhibitor, chelerythrine, or the phosphatase inhibitor okadaic acid. The potency of PMA in inhibiting [3H]dopamine uptake was similar to that in inhibiting the binding of 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane ([3H]WIN 35,428), and again staurosporine, but not chelerythrine, weakened the effect of PMA. The reduction in dopamine transporter activity by PMA was caused by a decrease in the Vmax value of [3H]dopamine uptake, opposed by a smaller reduction in the Km value, whereas the effect of PMA on [3H]WIN 35,428 binding was caused by a reduction in the Bmax value without a change in the Kd value. The lower Km value in the presence of PMA was accompanied by a higher IC50 of dopamine in inhibiting [3H]WIN 35,428 binding; the latter effect was attenuated by the co-presence of staurosporine. The results are discussed in the context of transporter loss from the cell surface, or a model with phosphorylation affecting the shared dopamine and WIN 35,428 binding domain on the transporter as well as affecting a part of the dopamine binding domain lying outside that for WIN 35,428.  相似文献   

11.
12.
13.
The concentration (Bmax) of the dopamine transporter (DAT) and the maximum and effective occupancies by cocaine doses of 0.1 mg/kg or 0.05 mg/kg were measured in the striatum of cocaine abusers (n = 12) by using [11C]cocaine as a radiotracer for the DAT and positron emission tomography (PET). Two methods based on a three-compartment model with one binding site (the nonlinear least squares (NLSQ) and the Farde pseudoequilibrium method) were used to estimate Bmax. Effective occupancies and maximum occupancies were calculated from the distribution volume ratios (DVR) and a three-compartment model, respectively. The NLSQ and Farde methods gave similar values of Bmax (average, 650 +/- 350 pmol/ml and 776 +/- 400 pmol/ml, respectively), but the individual estimates of Bmax were found to be very sensitive to small variations in other model parameters and were not correlated with the parameter Bmax/Kd (r = .07). The average maximum (and effective) occupancies were found to be 67% (50%) and 52% (39%) for the 0.1-mg/kg and the 0.05-mg/kg studies, respectively. The ED50 based on the effective occupancy corresponds to 0.1 mg/kg, which is significantly smaller than the ED50 of 3 mg/kg calculated from studies in which [123]beta-CIT is displaced by cocaine. The effect on the Bmax estimate of two binding sites with different Kd's is also considered by simulation. We conclude (1) that the lack of robustness in the Bmax estimate limits the usefulness of any one subject's Bmax and suggests that the combination parameter Bmax/Kd (or the DVR), which has been used extensively, is a more stable measure of free receptor/transporter concentration. The average Bmax may, however, provide an estimate of the expected concentration in humans. (2) The DVR can be used as a measure of DAT occupancy without applying an explicit model.  相似文献   

14.
N6-(p-Azidobenzyl)adenosine (ABA) and nitrobenzylthioinosine (NBMPR) were employed as covalent probes of the nucleoside transport mechanism in human erythrocytes. NBMPR, a potent inhibitor of nucleoside transport, binds tightly (KD 0.3-1 nM) to specific sites on nucleoside transporter elements. ABA, a less potent inhibitor of uridine influx, competitively inhibited NBMPR binding (Ki 15 nM). [3H]ABA was bound tightly (KD 13.4 nM) but reversibly to sites on erythrocytes which appeared to be those which bind NBMPR. ABA binding was inhibited by uridine and adenosine. Irradiation with UV light caused site-bound [3H]ABA on erythrocyte membranes to become covalently bound and, similarly, photoactivation resulted in covalent attachment of membrane-bound [3H]NBMPR. In the presence of dithiothreitol, a free radical scavenger, photoactivation of the site-bound 3H-ligand on membranes depleted of extrinsic membrane proteins resulted in selective incorporation of 3H into band 4.5 of the membrane polypeptides which were resolved on sodium dodecyl sulfate-polyacrylamide gel electropherograms. This result, when considered with previous findings, indicates that the NBMPR-binding component of the nucleoside transport mechanism (or the entire mechanism, if the NBMPR site is an integral part) is a band 4.5 polypeptide.  相似文献   

15.
Four analogs and two homologs of cocaine, designed as potent cocaine antagonists, were synthesized. The SN2 reaction between ecgonine methyl ester (13) or appropriately substituted piperidinol (19, 21) and appropriately substituted 4-iodobenzoyl chloride gave 4-iodobenzoyl esters of tropanes and piperidines (5-8). 2'-Hydroxycocaine (9) was obtained from 2'-acetoxycocaine (12) by selective transesterification with MeOH saturated with dry HCl gas. 2'-Acetoxycocaine (12) was synthesized from acetylsalicyloyl chloride (23) and ecgonine methyl ester (13). The binding affinities of these compounds were determined at the dopamine transporter for the displacement of [3H]WIN-35428. An iodo group substitution at the 4'-position of cocaine decreased dopamine transporter binding potency, while a hydroxy or acetoxy group at the 2'-position exhibited increased binding potency for the dopamine transporter compared to cocaine (10- and 3.58-fold, respectively). 2'-Hydroxylation also enhanced the bidning potency of 4'-iodococaine (5) by 10-fold. Replacement of the tropane ring with piperidine led to poor binding affinities.  相似文献   

16.
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the insulin-sensitive L6 myoblast cell line. Analysis of immunogold-labeled cells of independent clonal lines by electron microscopy indicated that 51-53% of GLUT1 was present in the plasma membrane in the basal state. Insulin did not significantly affect this distribution. In contrast, only 4.2-6.1% of GLUT4 was present in the plasma membrane of basal L6 cells and insulin increased this percentage by 3.7-6.1-fold. Under basal conditions and after insulin treatment, GLUT4 was detected in tubulovesicular structures, often clustered near Golgi stacks, and in endosome-like vesicles. Analysis of 25 chimeric transporters consisting of reciprocal domains of GLUT1 and GLUT4 by confocal immunofluorescence microscopy indicated that only the final 25 amino acids of the COOH-terminal cytoplasmic tail of GLUT4 were both necessary and sufficient for the targeting pattern observed for GLUT4. A dileucine motif present in the COOH-terminal tail of GLUT4 was found to be necessary, but not sufficient, for intracellular targeting. Contrary to previous studies, the NH2 terminus of GLUT4 did not affect the subcellular distribution of chimeras. Analysis of a chimera containing the COOH-terminal tail of GLUT4 by immunogold electron microscopy indicated that its subcellular distribution in basal cells was very similar to that of wild-type GLUT4 and that its content in the plasma membrane increased 6.8-10.5-fold in the presence of insulin. Furthermore, only the chimera containing the COOH terminus of GLUT4 enhanced insulin responsive 2-deoxyglucose uptake. GLUT1 and two other chimeras lacking the COOH terminus of GLUT4 were studied by immunogold electron microscopy and did not demonstrate insulin-mediated changes in subcellular distribution. The NH2-terminal cytoplasmic tail of GLUT4 did not confer intracellular sequestration and did not cause altered subcellular distribution in the presence of insulin. Intracellular targeting of one chimera to non-insulin-sensitive compartments was also observed. We conclude that the COOH terminus of GLUT4 is both necessary and sufficient to confer insulin-sensitive subcellular targeting of chimeric glucose transporters in L6 myoblasts.  相似文献   

17.
Inorganic phosphate (Pi) induced an inward current (IP) in Xenopus oocytes expressing the human renal Na+/Pi cotransporter NaPi-3. At 100mM Na+, Pi-transport was independent of the holding potential and resulted in an apparent Km of 0.08 mM; lowering the Na+ concentration to 50 mM resulted in an increase of the apparent Km to 0.22 mM at -50 mV and to 0.31 mM at -90 mV. In contrast, the apparent Km for Na+ was not significantly influenced by the holding potential. A decrease of the pH from 7.8 to 6.8 resulted in a decrease of IP at 50 mM Na+, but not at 150 mM Na+. Arsenate induced inward currents through NaPi-3 and decreased the apparent Km in measurements of IP. Phosphonoformic acid itself induced no currents, but inhibited Pi-induced currents with an apparent Ki of 3.6 mM. In summary, NaPi-3 displays characteristic Na+/Pi cotransporter properties with relevant interactions with arsenate (transport substrate) and phosphonoformic acid (inhibitor). Monovalent and divalent Pi both appear to be transported by NaPi-3.  相似文献   

18.
Withdrawal from an escalating-dose, bingelike regimen of cocaine administration in rats produced significantly depressed levels of locomotor activity during the nocturnal portion of the day-night cycle. This effect was observed during the first 48 hrs of testing. Extracellular single-unit recordings of ventral tegmental area (VTA) dopamine (DA) neurons revealed no differences between saline- and cocaine-treated rats with respect to basal firing rates. However, significantly fewer spontaneously active VTA DA neurons were encountered in rats withdrawn from binge cocaine. As with the nocturnal hypoactivity, this effect was observed only during the first 48 hrs of withdrawal. These findings suggest that short-term DA neuron dysfunction during cocaine withdrawal temporally corresponds to behavioral disruptions that are similar to those described in human addicts. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Asp187 in the Na+/proline transporter of Escherichia coli (PutP) is conserved within the Na+/solute cotransporter family. Information on the role of this residue has been gained by amino acid substitution analysis. PutP with Glu, Asn, or Cys in place of Asp187 catalyzed Na+-coupled proline uptake at 75%, 25%, and 1.5%, respectively, of the Vmax of PutP-wild-type while the apparent Km for proline was only slightly altered. Importantly, acetylation or amidoacetylation of an engineered transporter containing a single Cys at position 187 stimulated proline uptake. Strikingly, PutP-D187C exhibited high-affinity proline binding even at very low Na+ concentrations (2 microM) while proline binding to PutP-wild-type, -D187E, and -D187N was strictly dependent on the Na+ concentration. The apparent independence of proline binding from the Na+ concentration can at least partially be attributed to an enhanced Na+ affinity of PutP-D187C. In addition, reaction of PutP containing a single Cys at position 187 with N-ethylmaleimide was inhibited by Na+ but not by Li+ or proline. The results indicate that electrostatic interactions of the amino acid side chain at position 187 in PutP with other parts of the transporter and/or the coupling ion are crucial for active proline transport. It is suggested that Asp187 is located close to the pathway of the coupling ion through the membrane and may be involved in the release of Na+ on the cytoplasmic side of the membrane.  相似文献   

20.
The role of calmodulin (CaM) in apoptosis induced by gp160 of human immunodeficiency virus type 1 was investigated with cells undergoing single-cell killing. These cells were found to express, under the control of an inducible promoter, wild-type gp160 or mutant gp160 devoid of various lengths of the carboxyl terminus. Immunoprecipitation accompanied by immunoblotting revealed binding of CaM to wild-type gp160 but not to mutant gp160 bearing a carboxyl terminus with a deletion spanning more than five amino acid residues. A significant coenzyme activity was detected in the CaM bound to gp160 even in the presence of a Ca2+ chelater, EGTA. The cells forming this gp160-CaM complex exhibited an elevated intracellular Ca2+ level followed by DNA fragmentation, which is a hallmark of apoptosis, and finally cell killing, while the cells not forming this complex did not show any significant elevation in Ca2+ level or DNA fragmentation. These results thus indicated that CaM plays a key role in gp160-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号