首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with   MB ≲−20  , in clusters with redshifts in the range  0.31 ≲ z ≲ 0.59  , with a median of  〈 z 〉= 0.42  . We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al.
From our optical spectra, we measure the equivalent widths of  [O  ii ]λ3727, Hβ  and [O  iii ]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.  相似文献   

2.
We present the results of a search for strong H α emission line galaxies (rest frame equivalent widths greater than 50 Å) in the z ≈0.23 cluster Abell 2390. The survey contains 1189 galaxies over 270 arcmin2, and is 50 per cent complete at M r ≈−17.5+5 log  h . The fraction of galaxies in which H α is detected at the 2 σ level rises from 0.0 in the central regions (excluding the cD galaxy) to 12.5±8 per cent at R 200. For 165 of the galaxies in our catalogue, we compare the H α equivalent widths with their [O  ii ] λ 3727 equivalent widths, from the Canadian Network for Observational Cosmology (CNOC1) spectra. The fraction of strong H α emission line galaxies is consistent with the fraction of strong [O  ii ] emission galaxies in the CNOC1 sample: only 2±1 per cent have no detectable [O  ii ] emission and yet significant (>2 σ ) H α equivalent widths. Dust obscuration, non-thermal ionization, and aperture effects are all likely to contribute to this non-correspondence of emission lines. We identify six spectroscopically 'secure' k+a galaxies [ W 0(O  ii )<5 Å and W 0(H δ )≳5 Å]; at least two of these show strong signs in H α of star formation in regions that are covered by the slit from which the spectra were obtained. Thus, some fraction of galaxies classified as k+a based on spectra shortward of 6000 Å are likely to be undergoing significant star formation. These results are consistent with a 'strangulation' model for cluster galaxy evolution, in which star formation in cluster galaxies is gradually decreased, and is neither enhanced nor abruptly terminated by the cluster environment.  相似文献   

3.
We present a comparison between the SCUBA (Submillimetre Common User Bolometer Array) Half Degree Extragalactic Survey (SHADES) at 450 and  850 μm  in the Lockman Hole East with a deep Spitzer Space Telescope survey at  3.6–24 μm  conducted in guaranteed time. Using stacking analyses we demonstrate a striking correspondence between the galaxies contributing the submm extragalactic background light, with those likely to dominate the backgrounds at Spitzer wavelengths. Using a combination BRIzK plus Spitzer photometric redshifts, we show that at least a third of the Spitzer -identified submm galaxies at  1 < z < 1.5  appear to reside in overdensities when the density field is smoothed at 0.5–2 Mpc comoving diameters, supporting the high-redshift reversal of the local star formation–galaxy density relation. We derive the dust-shrouded cosmic star formation history of galaxies as a function of assembled stellar masses. For model stellar masses  <1011 M  , this peaks at lower redshifts than the ostensible   z ∼ 2.2  maximum for submm point sources, adding to the growing consensus for 'downsizing' in star formation. Our surveys are also consistent with 'downsizing' in mass assembly. Both the mean star formation rates  〈d M */d t 〉  and specific star formation rates  〈(1/ M *) d M */d t 〉  are in striking disagreement with some semi-analytic predictions from the Millenium Simulation. The discrepancy could either be resolved with a top-heavy initial mass function, or a significant component of the submm flux heated by the interstellar radiation field.  相似文献   

4.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

5.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

6.
On the H i content, dust-to-gas ratio and nature of Mg ii absorbers   总被引:1,自引:0,他引:1  
We estimate the mean dust-to-gas ratio of Mg  ii absorbers as a function of rest equivalent width W 0 and redshift over the range  0.5 < z < 1.4  . Using the expanded Sloan Digital Sky Survey/ Hubble Space Telescope sample of low-redshift Lyman-α absorbers, we first show the existence of a 8σ correlation between the mean hydrogen column density  〈 N H  i 〉  and W 0, an indicator of gas velocity dispersion. By combining these results with recent dust-reddening measurements, we show that the mean dust-to-gas ratio of Mg  ii absorbers does not appreciably depend on rest equivalent width. Assuming that, on average, dust-to-gas ratio is proportional to metallicity, we find its redshift evolution to be consistent with that of   L   galaxies from   z = 0.5  to 1.4, and we show that our constraints disfavour dwarf galaxies as the origin of such absorbers. We discuss other scenarios and favour galactic outflows from  ∼ L   galaxies as the origin of the majority of strong Mg  ii absorbers. Finally, we show that, once evolutionary effects are taken into account, the Bohlin et al. relation between A V and N H is also satisfied by strong Mg  ii systems down to lower column densities than those probed in our Galaxy.  相似文献   

7.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

8.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

9.
The relationship between the black hole mass and velocity dispersion indicated with [O  iii ] linewidth is investigated for a sample of 87 flat-spectrum radio quasars selected from the Sloan Digital Sky Survey Data Release 3 quasar catalogue. We found that the   M BH−σ[O III]  relation is different from the Tremaine et al. relation for nearby inactive galaxies, with a larger black hole mass at given velocity dispersion. There is no strong evidence of cosmology evolution in the   M BH−σ[O III]  relation up to   z ∼ 0.8  . A significant correlation between the [O  iii ] luminosity and broad-line region (BLR) luminosity is found. When transferring the [O  iii ] luminosity to narrow-line region (NLR) luminosity, the BLR luminosity is, on average, larger than the NLR one by about one order of magnitude. We found a strong correlation between the synchrotron peak luminosity and NLR luminosity, which implies a tight relation between the jet physics and accretion process.  相似文献   

10.
This work investigates the use of a well-known empirical correlation between the velocity dispersion, metallicity and luminosity in Hβ of nearby H  ii galaxies to measure the distances to H  ii -like starburst galaxies at high redshifts. This correlation is applied to a sample of 15 starburst galaxies with redshifts between   z = 2.17  and   z = 3.39  to constrain  Ωm  , using data available from the literature. A best-fitting value of  Ωm= 0.21+0.30−0.12  in a Λ-dominated universe and of  Ωm= 0.11+0.37−0.19  in an open universe is obtained. A detailed analysis of systematic errors, their causes and their effects on the values derived for the distance moduli and  Ωm  is carried out. A discussion of how future work will improve constraints on  Ωm  by reducing the errors is also presented.  相似文献   

11.
We present the optical identifications of a 95-μm ISOPHOT sample in the Lockman hole over an area of approximately half a deg2. The Rodighiero et al. catalogue includes 36 sources, making up a complete flux-limited sample for   S 95 μm≥ 100 mJy  . Reliable sources were detected, with decreasing but well-controlled completeness, down to   S 95 μm≃ 20 mJy  . We have combined mid-infrared (IR) and radio catalogues in this area to identify the potential optical counterparts of the far-IR sources. We found 14 radio and 13 15-μm associations, 10 of which have both associations. For the 11 sources with spectroscopic redshift, we have performed a spectrophotometric analysis of the observed spectral energy distributions (SEDs). Four of these 95-μm sources have been classified as faint IR (FIR) galaxies  ( L FIR < 1. e 11 L)  , six as luminous IR galaxies (LIRGs) and only one as an ultraluminous IR galaxy (ULIRG). We have discussed the redshift distribution of these objects, comparing our results with evolutionary model predictions 95 and 175 μm. Given their moderate distances (the bulk of the closest spectroscopically identified objects lying at   z < 0.2  ), their luminosities and star formation rates (SFR; median value  ∼ 10 M yr−1  ), the sources unveiled by ISOPHOT at 95 μm seem to correspond to the low redshift  ( z < 0.3)  FIRBACK 175-μm population, composed of dusty, star-forming galaxies with moderate SFRs. We computed and compared different SFR estimators, and found that the SF derived from the bolometric IR luminosity is well correlated with that computed from the radio and mid-IR fluxes.  相似文献   

12.
The effects of late gas accretion episodes and subsequent merger-induced starbursts on the photochemical evolution of elliptical galaxies are studied and compared to the picture of galaxy formation occurring at high redshift with a unique and intense starburst modulated by a very short infall, as suggested by Pipino and Matteucci in Paper I. By means of the comparison with the colour–magnitude relations (CMRs) and the  [〈Mg/Fe〉 V ]–σ  relation observed in ellipticals, we conclude that either bursts involving a gas mass comparable to the mass already transformed into stars during the first episode of star formation (SF) and occurring at any redshift, or bursts occurring at low redshift (i.e. z ≤ 0.2) and with a large range of accreted mass, are ruled out. These models fail in matching the above relations even if the initial infalling hypothesis is relaxed, and the galaxies form either by means of more complicated SF histories or by means of the classical monolithic model. On the other hand, galaxies accreting a small amount of gas at high redshift (i.e. z ≥ 3) produce a spread in the model results, with respect to the best model of Paper I, which is consistent with the observational scatter of the CMRs, although there is only marginal agreement with the  [〈Mg/Fe〉 V ]–σ  relation. Therefore, only small perturbations to the standard scenario seem to be allowed. We stress that the strongest constraints to galaxy-formation mechanisms are represented by the chemical abundances, whereas the colours can be reproduced under several different hypotheses.  相似文献   

13.
We produce and analyse u -band (  λ≈ 355  nm) luminosity functions (LFs) for the red and blue populations of galaxies using data from the Sloan Digital Sky Survey (SDSS) u -band Galaxy Survey ( u GS) and Deep Evolutionary Exploratory Probe 2 (DEEP2) survey. From a spectroscopic sample of 41 575 SDSS u GS galaxies and 24 561 DEEP2 galaxies, we produce colour magnitude diagrams and make use of the colour bimodality of galaxies to separate red and blue populations. LFs for eight redshift slices in the range  0.01 < z < 1.2  are determined using the  1/ V max  method and fitted with Schechter functions showing that there is significant evolution in   M *  , with a brightening of 1.4 mag for the combined population. The integration of the Schechter functions yields the evolution in the u -band luminosity density (LD) out to   z ∼ 1  . By parametrizing the evolution as  ρ∝ (1 + z )β  , we find that  β= 1.36 ± 0.2  for the combined populations and  β= 2.09 ± 0.2  for the blue population. By removing the contribution of the old stellar population to the u -band LD and correcting for dust attenuation, we estimate the evolution in the star formation rate (SFR) of the Universe to be  βSFR= 2.5 ± 0.3  . Discrepancies between our result and higher evolution rates measured using the infrared and far-UV can be reconciled by considering possibilities such as an underestimated dust correction at high redshifts or evolution in the stellar initial mass function.  相似文献   

14.
New calibrations of spectrophotometric indices of elliptical galaxies as functions of spectrophotometric indices are presented, permitting estimates of mean stellar population ages and metallicities. These calibrations are based on evolutionary models including a two-phase interstellar medium, infall and a galactic wind. Free parameters were fixed by requiring that models reproduce the mean trend of data in the colour–magnitude diagram as well as in the plane of indices  Hβ–Mg2  and  Mg2–〈Fe〉  . To improve the location of faint ellipticals  ( M B > −20)  in the  Hβ–Mg2  diagram, downsizing was introduced. An application of our calibrations to a sample of ellipticals and a comparison with results derived from single stellar population models are given. Our models indicate that mean population ages span an interval of 7–12 Gyr and are correlated with metallicities, which range from approximately half up to three times solar.  相似文献   

15.
Photometric redshifts are used to determine the rest-frame luminosity function (LF) of both early- and late-type galaxies to  MB∼−17.6  for the cluster Cl 1601+42 at  z=0.54  . The total LF shows a steep faint-end slope   α ∼−1.4  , indicating the existence of a population of numerous dwarf galaxies. Luminous galaxies, with  MB≲−19.5  are mostly red, early-type galaxies, with a LF best described by a Gaussian. Faint galaxies are predominantly blue, late-type galaxies, well fitted by a Schechter function with   α ∼−1.7  . Compared with clusters at lower redshift, the steepening of the faint end starts at brighter magnitudes for Cl 1601+42, which may indicate a brightening of the present-day dwarf population relative to the giant population with increasing redshift. Early-type galaxies are centrally concentrated, and dominate the core region, implying that the radial gradient of early-type galaxies seen in local clusters is already established at  z∼0.5  . Bright, late-type galaxies are rare, consistent with a decrease in star formation in field galaxies as they are accreted on to the cluster, while faint, blue galaxies are evenly distributed across the cluster, except for a depletion in the core region. The blue fraction is  fB∼0.15  , which is somewhat lower than the Butcher–Oemler average at  z∼0.5  . The value of f B is found to increase with limiting magnitude and with radius from the centre.  相似文献   

16.
Although the stellar initial mass function (IMF) has only been directly determined in star clusters, it has been manifoldly applied on galaxy-wide scales. But taking the clustered nature of star formation into account the galaxy-wide IMF is constructed by adding all IMFs of all young star clusters leading to an integrated galactic initial mass function (IGIMF). The IGIMF is top-light compared to the canonical IMF in star clusters and steepens with decreasing total star formation rate (SFR). This discrepancy is marginal for large disc galaxies but becomes significant for Small Magellanic Cloud type galaxies and less massive ones. We here construct IGIMF-based relations between the total far- and near-ultraviolet luminosities of galaxies and the underlying SFR. We make the prediction that the Hα luminosity of star-forming dwarf galaxies decreases faster with decreasing SFR than the ultraviolet (UV) luminosity. This turn-down of the Hα/UV-flux ratio should be evident below total SFRs of  10−2 M yr−1  .  相似文献   

17.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

18.
We examine the infrared properties of 43 high-redshift (0.1 < z < 1.2), infrared-luminous galaxies in the Extended Groth Strip (EGS), selected by a deep 70 μm survey with the Multiband Imaging Photometer on Spitzer (MIPS). In addition and with reference to starburst-type spectral energy distributions (SEDs), we derive a set of equations for estimating the total infrared luminosity ( L IR) in the range 8–1000 μm using photometry from at least one MIPS band. 42 out of 43 of our sources' optical/infrared SEDs (λobserved < 160 μm) are starburst type, with only one object displaying a prominent power-law near-infrared continuum. For a quantitative analysis, models of radiation transfer in dusty media are fit on to the infrared photometry, revealing that the majority of galaxies are represented by high extinction, A v > 35, and for a large fraction (∼50 per cent) the SED turns over into the Rayleigh–Jeans regime at wavelengths longward of 90 μm. For comparison, we also fit semi-empirical templates based on local galaxy data; however, these underestimate the far-infrared SED shape by a factor of at least 2 and in extreme cases up to 10 for the majority (∼70 per cent) of the sources. Further investigation of SED characteristics reveals that the mid-infrared (70/24 μm) continuum slope is decoupled from various galaxy properties such as the total infrared luminosity and far-infrared peak, quantified by the L 160/ L 70 ratio. In view of these results, we propose that these high-redshift galaxies have different properties to their local counterparts, in the sense that large amounts of dust cause heavy obscuration and are responsible for an additional cold emissive component, appearing as a far-infrared excess in their SEDs.  相似文献   

19.
We derive deep luminosity functions (LFs) (to   M z =−15  ) for galaxies in Abell 1835  ( z = 0.25)  and AC 114  ( z = 0.31)  , and compare these with the local z ' LF for 69 clusters. The data show that the faint-end upturn, the excess of galaxies above a single Schechter function at   M z < −17  , does not exist in the higher redshift clusters. This suggests that the faint-end upturn galaxies have been created recently, by infall into clusters of star-forming field populations or via tidal disruption of brighter objects.  相似文献   

20.
Stellar velocity dispersion in narrow-line Seyfert 1 galaxies   总被引:1,自引:0,他引:1  
Several authors have recently explored, for narrow-line Seyfert 1 galaxies (NLS1s), the relationship between black hole mass ( M BH) and stellar velocity dispersion (σ*). Their results are more or less in agreement and seem to indicate that NLS1s fill the region below the fit obtained by Tremaine et al., showing a range of σ* similar to that of Seyfert 1 galaxies, and a lower M BH. Until now, the [O  iii ] width has been used in place of the stellar velocity dispersion, but some indications have begun to arise against the effectiveness of the gaseous kinematics in representing the bulge potential, at least in NLS1s. Bian & Zhao have stressed the urgency of producing true σ* measurements. Here, we present new stellar velocity dispersions obtained through direct measurements of the Ca  ii absorption triplet (∼8550 Å) in the nuclei of eight NLS1 galaxies. The resulting σ* values and a comparison with σ[O III] confirm our suspicion that [O  iii ] typically overestimates the stellar velocity dispersion. We demonstrate that NLS1s follow the   M BH–σ*  relation as Seyfert 1, quasars and non-active galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号