首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
王云娇  张宁  李炳学 《微生物学通报》2023,50(10):4639-4654
类异戊二烯(isoprenoids)是最具化学多样性的一种天然分子家族,参与微生物中类胡萝卜素、甾醇等次生代谢物的合成,这类物质在工业大规模生产中具有广阔的商业前景。异戊烯基转移酶是类异戊二烯合成途径中的关键酶,其活性及编码基因的转录水平参与调节次生代谢物产量,在类异戊二烯化合物生物合成途径中发挥重要作用。本文重点归纳了微生物中异戊烯基转移酶的发现与鉴定,分析其结构特点与链长决定机制,讨论异戊烯基转移酶家族之间的复杂进化,概述酶基因表达调控的应用以及生物合成研究现状,为深入研究异戊烯基转移酶作用机理及各领域中的应用提供思路。  相似文献   

2.
异戊烯基化吲哚类生物碱广泛存在于麦角菌、青霉菌和曲霉菌中,具有一定的药理学活性,与未异戊烯基化的前体在生物活性方面具有明显的差异.曲霉菌中的某些异戊烯基化吲哚类生物碱具有抗癌活性,如烟曲霉毒素C(fumitremorgin C)、tryprostatin B,但其天然产量低且不易分离,利用化学酶合成法可很容易地将前体转化为异戊烯基化吲哚类生物碱.异戊烯基转移酶FtmPT1对二甲丙烯基二磷酸(dimethylallyl diphosphate,DMAPP)具有专一性,但可以接受不同的芳香族底物.早期研究发现,FtmPT1能接受含色氨酸的不同环二肽为底物,但以cyclo-L-Trp-L-Tyr和cyclo-L-Trp-L-Phe为底物时,酶的相对活性很低,其产物量少,无法用于合成产物.本实验通过优化酶反应条件来提高其产量.将已构建的含ftmPT1的质粒在大肠杆菌中诱导表达,经Ni-NTA亲和柱纯化后用于酶反应.实验结果表明,通过增加酶量(终浓度2.8 μmol/L)、延长培养时间(37 ℃,24 h),以cyclo-L-Trp-L-Tyr和cyclo-L-Trp-L-Phe为底物的酶反应产率分别达到49.3%和21.3%,产物经1H-NMR、1H-1H-COSY和ESI-MS鉴定,其结果与预期吻合.据检索,这2个化合物均为新化合物,分别命名为cyclo-C2-1′-DMA-L-Trp-L-Tyr和cyclo-C2-1′-DMA-L-Trp-L-Phe.  相似文献   

3.
次生代谢产物的生物学作用被认为是高等植物生存和进化的关键.类异戊二烯(Isoprenoids)化合物作为植物中极为丰富的一类次生代谢物,在植物信号转导、适应气候、繁殖及防御等方面具有多种生理功能.此外,植物类异戊二烯化合物还广泛应用于制药、天然乳胶、香料及有机合成等工业领域,具有重要的经济价值.异戊烯基转移酶(Pren...  相似文献   

4.
芳香族异戊烯转移酶的研究进展   总被引:2,自引:0,他引:2  
高娟  曾英  卢山 《植物学报》2010,45(6):751-759
异戊烯基转移酶(prenyltransferase)催化异戊烯基转移至异戊烯单元、芳香环或蛋白质上。芳香族异戊烯基转移酶将异戊烯单元融入含有芳环的化合物, 从而形成具有重要生物学功能的各类活性分子, 如泛醌、质体醌、维生素E、异戊烯黄酮类以及真菌代谢物等。该文综述了近年来植物和真菌芳香族异戊烯转移酶的分子生物学研究进展, 包括膜结合的参与质体醌生物合成的homogentisate solanesyltransferase、参与维生素E生物合成的homogentisate phytyltransferase、类黄酮异戊烯转移酶(flavonoid prenyltransferase)和可溶性的真菌吲哚异戊烯转移酶等。  相似文献   

5.
综述了叶片衰老的分子机理,并介绍了将外源异戊烯基转移酶(ipt,isopentenyl transferase)基因转入植物以获得抗衰老植株的研究进展。  相似文献   

6.
高娟  曾英  卢山 《植物学通报》2010,45(6):751-759
异戊烯基转移酶(prenyltransferase)催化异戊烯基转移至异戊烯单元、芳香环或蛋白质上。芳香族异戊烯基转移酶将异戊烯单元融入含有芳环的化合物,从而形成具有重要生物学功能的各类活性分子,如泛醌、质体醌、维生素E、异戊烯黄酮类以及真菌代谢物等。该文综述了近年来植物和真菌芳香族异戊烯转移酶的分子生物学研究进展,包括膜结合的参与质体醌生物合成的homogentisate solanesyltransferase、参与维生素E生物合成的homogentisate phytyltransferase、类黄酮异戊烯转移酶(flavonoid prenyltransferase)和可溶性的真菌吲哚异戊烯转移酶等。  相似文献   

7.
无花果亚属隶属于桑科,既是重要的水果资源,也是优良的中药资源,广泛种植于热带、亚热带地区,因含有丰富的生物活性成分和保健功效,经济价值突出。无花果亚属植物中异戊烯基类黄酮含量丰富,结构多样,已报道有37种异黄酮、2种黄烷酮、7种黄酮和1种查尔酮。无花果异戊烯基类黄酮具有突出的抗氧化活性,能够缓解更年期症状,保护骨骼、预防炎症、预防癌症等。从化学结构和生物活性两方面对无花果亚属植物的异戊烯基黄酮类化合物的研究概况进行总结,以期为该属植物的开发和利用提供参考。  相似文献   

8.
综述了藤黄属植物笼状多异戊烯基酮类化合物的研究概况,总结了该类化合物的结构特点、波谱学特征、生合成途径以及生物活性。  相似文献   

9.
细胞分裂素合成基因ipt研究进展(综述)   总被引:1,自引:0,他引:1  
异戊烯基转移酶是细胞分裂素生物合成第一步的催化酶,也是限速酶。其编码基因ipt已被克隆,运用生物信息学方法,在拟南芥中鉴定出与微生物同源的编码异戊烯基转移酶的基因家族,推测这些基因可能存在特殊时空表达来调控细胞分裂素的合成途径。本文着重介绍ipt在细胞分裂素合成中的作用和研究进展。  相似文献   

10.
以巴西橡胶树(Hevea brasiliensis)胶乳的RNA为Tester;叶片RNA为Driver,利用抑制消减杂交法(suppressive subtractive hybridization,SSH)构建了一个胶乳特异表达基因差减文库.通过反式Northern点杂交(reverse Northern dot blots)筛选到一个与顺式异戊烯基转移酶基因(橡胶生物合成的关键酶基因)高度同源的阳性克隆R363.采用RACE方法获得该克隆的全长cDNA(GenBank登陆号:AY461414).序列分析表明,该基因长1156 bp,含有873 bp的阅读框,编码290个氨基酸,分子量约为32.9 kD,等电点为7.2,含有N-端跨膜螺旋区.同源性分析表明R363编码的蛋白质具有异戊烯基转移酶家族的特征,含有cis-异戊烯基链转移酶的5个高度保守区,推测R363可能是一种新的顺式-异戊烯基转移酶基因.Northern blot分析显示,R363在胶乳中高度表达,在叶中不表达.乙烯处理前后表达强度一致,表明该基因表达不为乙烯所诱导.  相似文献   

11.
Prenylated aromatics (PAs) are an important class of natural products with valuable pharmaceutical applications. To address current limitations of their sourcing from plants, here, we present a microbial platform for the in vivo synthesis of PAs based on the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. As proof of concept, we targeted the prenylation of phenolic/phenolcarboxylic acids, including orsellinic (OSA), divarinolic (DVA), and olivetolic (OLA) acids, whose prenylated products have important biopharmaceutical applications. Although the ability of wild-type NphB to catalyze the prenylation reaction with each acid was validated by in vitro characterization, improvement of product titers in vivo required protein modeling and rational design to engineer NphB variants with increased activity and product selectivity. When a designed NphB variant with eightfold improved catalytic efficiency toward OSA was expressed in an Escherichia coli host engineered to generate geranyl pyrophosphate at high flux through the mevalonate pathway, we observed up to 300 mg/L prenylated products by exogenously supplying OSA. The improved properties of engineered NphB were also utilized to demonstrate the diversification of this in vivo platform by using both different aromatic acceptors and different prenyl donors to generate various PA compounds, including medicinally important compounds such as cannabigerovarinic, cannabigerolic, and grifolic acids.  相似文献   

12.
Phenolic acids act as signaling molecules in plant-microbe symbioses   总被引:3,自引:0,他引:3  
Phenolic acids are the main polyphenols made by plants. These compounds have diverse functions and are immensely important in plant-microbe interactions/symbiosis. Phenolic compounds act as signaling molecules in the initiation of legumerhizobia symbioses, establishment of arbuscular mycorrhizal symbioses and can act as agents in plant defense. Flavonoids are a diverse class of polyphenolic compounds that have received considerable attention as signaling molecules involved in plant-microbe interactions compared to the more widely distributed, simple phenolic acids; hydroxybenzoic and hydroxycinnamic acids, which are both derived from the general phenylpropanoid pathway. This review describes the well-known roles attributed to phenolic compounds as nod gene inducers of legume-rhizobia symbioses, their roles in induction of the GmGin1 gene in fungus for establishment of arbuscular mycorrhizal symbiosis, their roles in inducing vir gene expression in Agrobacterium, and their roles as defense molecules operating against soil borne pathogens that could have great implications for rhizospheric microbial ecology. Amongst plant phenolics we have a lack of knowledge concerning the roles of phenolic acids as signaling molecules beyond the relatively well-defined roles of flavonoids. This may be addressed through the use of plant mutants defective in phenolic acids biosynthesis or knock down target genes in future investigations.Key words: Agrobacterium sp., flavonoids, legume-rhizobium symbioses, phenolic acids, plant defense, vesicular arbuscular mycorrhiza  相似文献   

13.
Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.  相似文献   

14.
A better understanding of phytohormone physiology can provide an essential basis to coherently achieve a conservation drive/strategy for valuable plant species. We evaluated the distribution pattern of cytokinins (CKs) and phenolic compounds in different organs of 1‐year‐old greenhouse‐grown Tulbaghia simmleri pre‐treated (during micropropagation) with three aromatic CKs (benzyladenine = BA, meta‐topolin = mT, meta‐topolin riboside = mTR). The test species is highly valuable due to its medicinal and ornamental uses. Based on UHPLC‐MS/MS quantification, mT and mTR pre‐treated plants had the highest total CK, mostly resulting from the isoprenoid CK‐type, which occurred at highest concentrations in the roots. Although occurring in much lower concentrations when compared to isoprenoid CKs, aromatic CKs were several‐fold more abundant in the root of mT pre‐treated plants than with other treatments. Possibly related to the enhanced aromatic CKs, free bases and ribonucleotides, plants pre‐treated with mT generally displayed better morphology than the other treatments. A total of 12 bioactive phenolic compounds, including four hydroxybenzoic acids, five hydroxycinnamic acids and three flavonoids at varying concentrations, were quantified in T. simmleri. The occurrence, distribution and levels of these phenolic compounds were strongly influenced by the CK pre‐treatments, thereby confirming the importance of CKs in phenolic biosynthesis pathways.  相似文献   

15.
Propolis is a natural substance collected by honey bees from various plants such as, poplar, palm, pine, conifer secretions, gums, resins, mucilage and leaf buds. It is collected and brought very painstakingly by honey bees to be used for sealing cracks and crevices occurring in their hives. Originally, it as an antiseptic meant for preventing bee-hive from microbial infections along with preventing decomposition of intruders. Additionally, propolis has been used in folk medicine for centuries. The biological characteristics of propolis depend upon its chemical composition, plant sources, geographical zone and seasons. More than 300 compounds have been identified in propolis such as, phenolic compounds, aromatic acids, essential oils, waxes and amino acids. Many scientific articles are published every year in different international journals, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis.  相似文献   

16.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   

17.
Cai YZ  Mei Sun  Jie Xing  Luo Q  Corke H 《Life sciences》2006,78(25):2872-2888
Traditional Chinese medicinal plants associated with anticancer contain a wide variety of natural phenolic compounds with various structural features and possessing widely differing antioxidant activity. The structure-radical scavenging activity relationships of a large number of representative phenolic compounds (e.g., flavanols, flavonols, chalcones, flavones, flavanones, isoflavones, tannins, stilbenes, curcuminoids, phenolic acids, coumarins, lignans, and quinones) identified in the traditional Chinese medicinal plants were evaluated using the improved ABTS*+ and DPPH methods. Different categories of tested phenolics showed significant mean differences in radical scavenging activity. Tannins demonstrated the strongest activity, while most quinones, isoflavones, and lignans tested showed the weakest activity. This study confirmed that the number and position of hydroxyl groups and the related glycosylation and other substitutions largely determined radical scavenging activity of the tested phenolic compounds. The differences in radical scavenging activity were attributed to structural differences in hydroxylation, glycosylation and methoxylation. The ortho-dihydroxy groups were the most important structural feature of high activity for all tested phenolic compounds. Other structural features played a modified role in enhancing or reducing the activity. Within each class of phenolic compounds, the structure-activity relationship was elucidated and discussed. This study reveals the structure-activity relationships of a large series of representative natural phenolic compounds more systematically and fully than previous work. Structure-radical scavenging activity relationships of some natural phenolics identified in the medicinal plants were evaluated for the first time.  相似文献   

18.
The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.  相似文献   

19.
Metabolism of phenolic compounds in healthy and brown rust-infected barley and wheat varieties
Infections with Puccinia isolates cause an accumulation of phenolic compounds both in resistant and susceptible isogenic lines of barley and wheat seedlings. The increased de novo biosynthesis of hydroxy-cinnamic and -benzoic acids is catalysed by the enzyme phenylalanine-ammonia-lyase (PAL) whose activity seems to be controlled not only by the substrate (phenylalanine) but also by the formed products (phenols). Depending on its actual physiological state every plant species shows as a reaction upon infection a typical behaviour. It is remarkable that healthy and rust-infected plants contain the same percentage of individual phenolic acids. An infection does not lead to an increase of individual hydroxycinnamic- or benzoic acids. There are only differences in quantity but no differences in quality. The pattern of phenolic acids seems to be largely genetically determined and formed according to the developmental stage of the plants. The hydroxycinnamic and -benzoic acids formed during the host-parasit-interactions seem to be, at least for the analysed combinations, more the consequence than the cause of resistance.  相似文献   

20.
Lignin forms from the polymerization of phenylpropanoid-derived building blocks (the monolignols), whose modification through hydroxylation and O-methylation modulates the chemical and physical properties of the lignin polymer. The enzyme caffeic acid O-methyltransferase (COMT) is central to lignin biosynthesis. It is often targeted in attempts to engineer the lignin composition of transgenic plants for improved forage digestibility, pulping efficiency, or utility in biofuel production. Despite intensive investigation, the structural determinants of the regiospecificity and substrate selectivity of COMT remain poorly defined. Reported here are x-ray crystallographic structures of perennial ryegrass (Lolium perenne) COMT (Lp OMT1) in open conformational state, apo- and holoenzyme forms and, most significantly, in a closed conformational state complexed with the products S-adenosyl-L-homocysteine and sinapaldehyde. The product-bound complex reveals the post-methyl-transfer organization of COMT's catalytic groups with reactant molecules and the fully formed phenolic-ligand binding site. The core scaffold of the phenolic ligand forges a hydrogen-bonding network involving the 4-hydroxy group that anchors the aromatic ring and thereby permits only metahydroxyl groups to be positioned for transmethylation. While distal from the site of transmethylation, the propanoid tail substituent governs the kinetic preference of ryegrass COMT for aldehydes over alcohols and acids due to a single hydrogen bond donor for the C9 oxygenated moiety dictating the preference for an aldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号