首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacitated vehicle routing problem (CVRP) is the problem in which a set of identical vehicles located at a central depot is to be optimally routed to supply customers with known demands subject to vehicle capacity constraints. This paper provides a review of the most recent developments that had a major impact in the current state-of-the-art of exact algorithms for the CVRP. The most important mathematical formulations for the problem together with various CVRP relaxations are reviewed. The paper also describes the recent exact methods for the CVRP and reports a comparison of their computational performances.   相似文献   

2.
The generalized vehicle routing problem (GVRP) is an extension of the vehicle routing problem (VRP) and was introduced by Ghiani and Improta [1]. The GVRP is the problem of designing optimal delivery or collection routes from a given depot to a number of predefined, mutually exclusive and exhaustive node-sets (clusters) which includes exactly one node from each cluster, subject to capacity restrictions. The aim of this paper is to provide two new models of the GVRP based on integer programming. The first model, called the node formulation is similar to the Kara-Bekta? formulation [2], but produces a stronger lower bound. The second one, called the flow formulation, is completely new. We show as well that under specific circumstances the proposed models of the GVRP reduces to the well known routing problems. Finally, the GVRP is extended for the case in which the vertices of any cluster of each tour are contiguous. This case is defined as the clustered generalized vehicle routing problem and both of the proposed formulations of GVRP are adapted to clustered case.  相似文献   

3.
In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications. The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem. Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with multiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles. The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement approaches based on the idea of changing the neighbourhood structure during the search.  相似文献   

4.
The capacitated vehicle routing problem (CVRP) with a single depot is a classic routing problem with numerous real-world applications. This paper describes the design, modelling and computational aspects of ALGELECT (electrostatic algorithm), a new algorithm for the CVRP. After some general remarks about the origin of the algorithm and its parameters, a parameter tuning process is carried out in order to improve its efficiency. The algorithm is then explained in detail and its main characteristics are presented. Thus, ALGELECT develops good-quality solutions to the CVRP, in terms of the number of scheduled routes and the load ratio of the delivery vehicles. Finally, ALGELECT is used to find solutions for some Solomon's and Augerat's instances, which are then compared to solutions generated by other well-known methods.  相似文献   

5.
In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The algorithm is based on branch-and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem.  相似文献   

6.
In the open vehicle routing problem (OVRP), the objective is to minimise the number of vehicles and then minimise the total distance (or time) travelled. Each route starts at the depot and ends at a customer, visiting a number of customers, each once, en route, without returning to the depot. The demand of each customer must be completely fulfilled by a single vehicle. The total demand serviced by each vehicle must not exceed vehicle capacity. Additionally, in one variant of the problem, the travel time of each vehicle should not exceed an upper limit.  相似文献   

7.
An exact algorithm for solving a capacitated location-routing problem   总被引:2,自引:0,他引:2  
In location-routing problems, the objective is to locate one or many depots within a set of sites (representing customer locations or cities) and to construct delivery routes from the selected depot or depots to the remaining sites at least system cost. The objective function is the sum of depot operating costs, vehicle acquisition costs and routing costs. This paper considers one such problem in which a weight is assigned to each site and where sites are to be visited by vehicles having a given capacity. The solution must be such that the sum of the weights of sites visited on any given route does not exceed the capacity of the visiting vehicle. The formulation of an integer linear program for this problem involves degree constraints, generalized subtour elimination constraints, and chain barring constraints. An exact algorithm, using initial relaxation of most of the problem constraints, is presented which is capable of solving problems with up to twenty sites within a reasonable number of iterations.  相似文献   

8.
In this paper, another version of the vehicle routing problem (VRP)—the open vehicle routing problem (OVRP) is studied, in which the vehicles are not required to return to the depot, but if they do, it must be by revisiting the customers assigned to them in the reverse order. By exploiting the special structure of this type of problem, we present a new tabu search heuristic for finding the routes that minimize two objectives while satisfying three constraints. The computational results are provided and compared with two other methods in the literature.  相似文献   

9.
On the capacitated vehicle routing problem   总被引:1,自引:0,他引:1  
 We consider the Vehicle Routing Problem, in which a fixed fleet of delivery vehicles of uniform capacity must service known customer demands for a single commodity from a common depot at minimum transit cost. This difficult combinatorial problem contains both the Bin Packing Problem and the Traveling Salesman Problem (TSP) as special cases and conceptually lies at the intersection of these two well-studied problems. The capacity constraints of the integer programming formulation of this routing model provide the link between the underlying routing and packing structures. We describe a decomposition-based separation methodology for the capacity constraints that takes advantage of our ability to solve small instances of the TSP efficiently. Specifically, when standard procedures fail to separate a candidate point, we attempt to decompose it into a convex combination of TSP tours; if successful, the tours present in this decomposition are examined for violated capacity constraints; if not, the Farkas Theorem provides a hyperplane separating the point from the TSP polytope. We present some extensions of this basic concept and a general framework within which it can be applied to other combinatorial models. Computational results are given for an implementation within the parallel branch, cut, and price framework SYMPHONY. Received: October 30, 2000 / Accepted: December 19, 2001 Published online: September 5, 2002 Key words. vehicle routing problem – integer programming – decomposition algorithm – separation algorithm – branch and cut Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

10.
The Multi-Compartment Vehicle Routing Problem involves clients with a demand for different products and vehicles with several compartments to co-transport these commodities. We present a local search procedure that explores well-known moves (2-opt, cross, exchange, relocate), and exploits the mechanisms of neighbour lists and marking to speed up the searches. We combine the procedure with the Guided Local Search meta-heuristic to improve solution quality. Extensive computational results are reported to uncover when co-distribution by vehicles with multiple compartments is better than separate distribution with un-partitioned trucks. Sensitivities in key problem parameters including, client density and location of the depot, vehicle capacity, client demand and number of commodities are investigated.  相似文献   

11.
This paper presents an approximation algorithm for a vehicle routing problem on a tree-shaped network with a single depot where there are two types of demands, pickup demand and delivery demand. Customers are located on nodes of the tree, and each customer has a positive demand of pickup and/or delivery.Demands of customers are served by a fleet of identical vehicles with unit capacity. Each vehicle can serve pickup and delivery demands. It is assumed that the demand of a customer is splittable, i.e., it can be served by more than one vehicle. The problem we are concerned with in this paper asks to find a set of tours of the vehicles with minimum total lengths. In each tour, a vehicle begins at the depot with certain amount of goods for delivery, visits a subset of the customers in order to deliver and pick up goods and returns to the depot. At any time during the tour, a vehicle must always satisfy the capacity constraint, i.e., at any time the sum of goods to be delivered and that of goods that have been picked up is not allowed to exceed the vehicle capacity. We propose a 2-approximation algorithm for the problem.  相似文献   

12.
The open vehicle routing problem (OVRP) differs from the classic vehicle routing problem (VRP) because the vehicles either are not required to return to the depot, or they have to return by revisiting the customers assigned to them in the reverse order. Therefore, the vehicle routes are not closed paths but open ones. A heuristic method for solving this new problem, based on a minimum spanning tree with penalties procedure, is presented. Computational results are provided.  相似文献   

13.
This study considers network design, capacity planning and vehicle routing for collection systems in reverse logistics. The network design and capacity planning problems are to determine the static locations and capacities of collection points as well as the dynamic allocations of demand points to the opened collection points over a planning horizon, and the vehicle routing problem is to determine the number and routes of vehicles in such a way that each collection point must be visited exactly once by one vehicle starting and terminating at the depot while satisfying the return demands at collection points and the vehicle capacity. The objective is to minimize the sum of fixed costs to open collection points and to acquire vehicles as well as variable costs to transport returns at demand points to the opened collection points and travel the opened collection points by vehicles. Unlike the location-routing problems, the integrated problem considered in this study has several features: multi-period dynamic model, capacity planning for collection points, maximum allowable collection distances, etc. To solve the integrated problem, two types of tabu search algorithms, hierarchical and integrated ones, are suggested, and their test results are reported. In particular, the efficiency of the integrated approach is shown by comparing the two algorithm types.  相似文献   

14.
Network loading problems occur in the design of telecommunication networks, in many different settings. For instance, bifurcated or non-bifurcated routing (also called splittable and unsplittable) can be considered. In most settings, the same polyhedral structures return. A better understanding of these structures therefore can have a major impact on the tractability of polyhedral-guided solution methods. In this paper, we investigate the polytopes of the problem restricted to one arc/edge of the network (the undirected/directed edge capacity problem) for the non-bifurcated routing case.?As an example, one of the basic variants of network loading is described, including an integer linear programming formulation. As the edge capacity problems are relaxations of this network loading problem, their polytopes are intimately related. We give conditions under which the inequalities of the edge capacity polytopes define facets of the network loading polytope. We describe classes of strong valid inequalities for the edge capacity polytopes, and we derive conditions under which these constraints define facets. For the diverse classes the complexity of lifting projected variables is stated.?The derived inequalities are tested on (i) the edge capacity problem itself and (ii) the described variant of the network loading problem. The results show that the inequalities substantially reduce the number of nodes needed in a branch-and-cut approach. Moreover, they show the importance of the edge subproblem for solving network loading problems. Received: September 2000 / Accepted: October 2001?Published online March 27, 2002  相似文献   

15.
The vehicle routing problem with backhaul (VRPB) is an extension of the capacitated vehicle routing problem (CVRP). In VRPB, there are linehaul as well as backhaul customers. The number of vehicles is considered to be fixed and deliveries for linehaul customers must be made before any pickups from backhaul customers. The objective is to design routes for the vehicles so that the total distance traveled is minimized. We use multi-ant colony system (MACS) to solve VRPB which is a combinatorial optimization problem. Ant colony system (ACS) is an algorithmic approach inspired by foraging behavior of real ants. Artificial ants are used to construct a solution by using pheromone information from previously generated solutions. The proposed MACS algorithm uses a new construction rule as well as two multi-route local search schemes. An extensive numerical experiment is performed on benchmark problems available in the literature.  相似文献   

16.
 In an unpublished paper, Araque, Hall and Magnanti considered polyhedra associated with the Capacitated Vehicle Routing Problem (CVRP) in the special case of unit demands. Among the valid and facet-inducing inequalities presented in that paper were the so-called multistar and partial multistar inequalities, each of which came in several versions. Some related inequalities for the case of general demands have appeared subsequently and the result is a rather bewildering array of apparently different classes of inequalities. The main goal of the present paper is to present two relatively simple procedures that can be used to show the validity of all known (and some new) multistar and partial multistar inequalities, in both the unit and general demand cases. The procedures provide a unifying explanation of the inequalities and, perhaps more importantly, ideas that can be exploited in a cutting plane algorithm for the CVRP. Computational results show that the new inequalities can be useful as cutting planes for certain CVRP instances. Received: January 9, 1999 / Accepted: June 17, 2002 Published online: September 27, 2002 Key Words. vehicle routing – valid inequalities – cutting planes  相似文献   

17.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

18.
We study capacitated vehicle routing problems (CVRPs) in which the client demands occur over time and the collector or distributor performing the service can decide when to visit the clients. It has been reported in the literature that postponement of collection (or delivery) services may decrease the overall routing cost or distance. We investigate this issue in greater detail and report on experiments in different routing settings to uncover the impact of postponement on routing efficiency. We compare the results by a CVRP local search procedure with those obtained from an analytical, Continuous Approximation model. While the two approaches tend to generate similar results, the differences grow larger when the CVRPs’ bin packing characteristics become more intricate.  相似文献   

19.
This paper presents an adaptive memory-based method for solving the Capacitated Vehicle Routing Problem (CVRP), called BoneRoute. The CVRP deals with the problem of finding the optimal sequence of deliveries conducted by a fleet of homogeneous vehicles, based at one depot, to serve a set of customers. The computational performance of the BoneRoute was found to be very efficient, producing high quality solutions over two sets of well known case studies examined.  相似文献   

20.
In this paper we address a rich vehicle routing problem that arises in real-life applications. Among other aspects we consider time windows, simultaneous delivery and pick-up at customer locations and multiple use of vehicles. To guarantee a coordinated material flow at the depot, we include the timed allocation of vehicles to loading bays at which the loading and unloading activities can occur. The resulting vehicle routing problem is formulated as a two-index vehicle-flow model which integrates the routing under real-life conditions and the assignment of vehicles to loading bays at the depot. We use CPLEX 11.0 to solve medium-sized instances that are derived from the extended Solomon test set. The selective implementation of preprocessing techniques and cutting planes improves the solver performance significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号