首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal-oxidation characteristics of cast irons containing aluminum (5–15% Al) from 700 to 1000°C in air have been studied. In addition to massgain measurements, the morphology and composition of the oxide scales have been examined by SEM-EDX system and XRD analysis. A normal Fe–5Al–C alloy does not develop protective, adherent scales. Even the addition of misch metal and calcium silicide to such an alloy does not improve its oxidation resistance. But aluminum cast iron develops considerable oxidation resistance only when a sufficient quantity of silicon is also present in the alloy. Treatment of the alloy with misch, metal and calcium silicide together assists in protective scale formation. Among the alloys investigated Fe–15Al–Si–C treated with misch metal and calcium silicide shows minimum oxidation at 1000°C.  相似文献   

2.
Four experimental oxide dispersion strengthened (ODS)Fe-(13–14 at. %)Cr ferritic alloys were exposed for up to 10,000 hr at 700–1100 °C in air and in air with 10vol.% water vapor. Their performance has been compared to other commercial ODS and stainless steel alloys. At 700–800°C, the reaction rates in air were very low for all of the ODS Fe–Cr alloys compared to stainless steels. At 900°C, a Y2O3 dispersion showed a distinct benefit in improving oxidation resistance compared to an Al2O3 dispersion or no addition in the stainless steels. However, for the Fe-13 %Cr alloy, breakaway oxidation occurred after 7,000 hr at 900°C in air. Exposures in 10 % water vapor at 800 and 900°C and in air at 1000 and 1100°C showed increased attack for this class of alloys. Because of the relatively low Cr reservoirs in these alloys, their maximum operating temperature in air will be below 900°C.  相似文献   

3.
Dunning  J. S.  Alman  D. E.  Rawers  J. C. 《Oxidation of Metals》2002,57(5-6):409-425
The effect of Si and Al additions on the oxidation of austenitic stainless steels with a baseline composition of Fe–16Cr–16Ni–2Mn–1Mo (wt.%) has been studied. The combined Si and Al content of the alloys did not exceed 5 wt.%. Cyclic-oxidation tests were carried out in air at 700 and 800°C for a duration of 1000 hr. For comparison, conventional 18Cr–8Ni type-304 stainless steel specimens were also tested. The results showed that at 700°C, alloys containing Al and Si, and alloys with only Si additions showed weight gains about one half that of the conventional type-304 alloy. At 800°C, alloys that contained both Al and Si additions showed weight gains approximately two times greater than the type-304 alloy. However, alloys containing only Si additions showed weight gains four times less than the 304 stainless. Further, alloys with only Si additions preoxidized at 800°C, showed zero weight gain in subsequent testing for 1000 hr at 700°C. Clearly, the oxide-scale formation and rate-controlling mechanisms in the alloys with combined Si and Al additions at 800°C were different than the alloys with Si only. ESCA, SEM, and a bromide-etching technique were used to analyze the chemistry of the oxide films and the oxide–base-metal interface, in order to study the different oxide film-formation mechanisms in these alloys.  相似文献   

4.
The oxidation of two Fe–Nb alloys containing 15 and 30 wt.% Nb has been studied at 600–800°C under low oxygen pressures, similar to those prevailing in environments of the coal-gasification type. The reaction produced only an internal oxidation of niobium to form two niobium oxides (NbO2 and Nb2O5) and in some cases a double Fe–Nb oxide. The kinetics of this reaction were very slow at 600°C but rather fast at 700 and 800°C. A peculiar feature of the internal oxidation of these alloys is that the distribution of the internal oxides follows closely that of the Nb-rich phase in the original two-phase alloys. This behavior, as well as the lack of formation of external scales of niobium oxides, is mainly a result of the limited solubility of niobium in iron and of the consequent presence of two metal phases in the alloys.  相似文献   

5.
The oxidation behavior of Fe–20Cr–5Al–(0.5–5)Si and Fe–(12–20)Cr–(5–7)Al–(1–2)Si alloys extruded into honeycomb structures has been investigated at 1150°C in air for up to 500 hr. The oxidation weight gains decrease with increasing Si and Cr contents in the 5-Al alloys. Si additions are more efficient than Cr additions to reduce the weight gain. Increasing Si content in the 5-Al alloys suppresses the formation of an iron-chromium complex oxide, forming mullite and vitreous silica in the scale, although the location is not clearly indicated. The 5-Si alloy shows anisotropy in elongation of the honeycomb specimen during oxidation in the Fe–20Cr–5Al–xSi alloys, whereas alloying with Si and Cr does not improve the oxidation resistance of the 7-Al alloys significantly. These results are explained by Wagner's theory of a secondary getter. However, we point out additionally that the difference between Si and Cr in the Pilling-Bedworth ratio and the solubility of their oxides in the Al2O3 scale may contribute to the significant effect of Si additions. Finally, this paper demonstrates that the selected Fe–Cr–Al–Si honeycombs having walls 200 m thick show excellent oxidation resistance over 500 hr at 1150°C in air. The time to catastrophic oxidation is roughly proportional to the wall thickness in extruded honeycombs.  相似文献   

6.
Conclusions Alloying of Fe–Co–Ni–Al–Cu-base magnetically hard alloys with hafnium broadens the area of existence of the bcc solid solution. The oxidation resistance of the alloys increases and the temperature of the start of intense oxidation increases from 400 to 900°C.Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 51–53, April, 1987.  相似文献   

7.
Since titanium alloys with an adequate balance of mechanical properties and high-temperature oxidation resistance have not been developed, protective coatings are required. In our previous paper, B-modified and Ge-doped silicide diffusion coatings grown on CP Ti, Ti–24Al–11Nb, Ti–22Al–27Nb, and Ti–20Al–22Nb by the halide-activated, pack-cementation method were described. In this study, isothermal and cyclic oxidation were used to evaluate the oxidation performance of these coatings in comparison to uncoated substrates. The rate-controlling mechanism for isothermal oxidation at high temperature was solid-state diffusion through a SiO2 scale, while the mechanism for low-temperature oxidation involved grain-boundary diffusion through TiO2. Both isothermal and cyclic oxidation rates for the B-modified and Ge-doped silicide coatings were much slower than for pure TiSi2. Oxygen contamination was not detected by microhardness measurements in the coated substrates after 200 oxidation cycles at 500–1000°C for the Ti–Al–Nb alloys, or at 500–875°C for CP Ti. The excellent oxidation resistance for the optimum coating compositions is discussed.  相似文献   

8.
Li  Z.  Gao  W.  Li  S.  Zhang  D.  He  Yedong 《Oxidation of Metals》2001,56(5-6):495-516
Thin films of aluminum, cerium, and yttrium oxides were applied onto the surfaces of Ti3Al–11Nb samples using an electrodeposition technique. The oxidation behaviors of the Ti3Al–Nb alloy, with and without these surface-applied films, were studied in air at 800–1000°C. The results showed that the oxidation rate of the alloy can be reduced by Ce oxide and Y oxide films, and the greatest improvement comes from oxidation of the Y oxide-coated specimens at 800°C. With increasing oxidation temperature, the difference between the Co-oxide and Y-oxide films becomes smaller. The results also indicated that the Ce-oxide and Y-oxide films can significantly improve the oxide scale-spallation resistance. On the other hand, Al-oxide films result in detrimental effects on the oxidation and scale-spallation resistance of the Ti3Al–Nb alloy. Based on the experimental results, the effects of the different surface films on the oxidation mechanism are discussed.  相似文献   

9.
The oxidation of two Co–Nb alloys containing 15 and 30 wt.% Nb has been studied at 600–800° C in H2–CO2 mixtures providing an oxygen pressure of 10–24 atm at 600°C and 10–20 atm at 700 and 800°C, below the dissociation pressure of cobalt oxide. At 600 and 700°C both alloys showed only a region of internal oxidation composed, of a mixture of alpha cobalt and of niobium oxides (NbO2 and Nb2O5) and at 700°C also the double oxide CoNb2O6, which formed from the Nb-rich Co3Nb phase. No Nb-depleted layer formed in the alloy at the interface with the region of internal oxidation at these temperatures. Upon oxidation at 800°C a transition between internal and external oxidation of niobium was observed, especially for Co–30Nb. This corrosion mode is associated with the development of a single-phase, Nb-depleted region at the surface of the alloy. The corrosion mechanism of these alloys is examined with special reference to the effect of the low solubility of niobium in cobalt and to the relation between the microstructures of the alloys and of the scales.  相似文献   

10.
The internal oxides formed in Fe–31.1Mn–9.07Al–0.89C at 750–850°C in air with 2 mg/cm2 NaCl deposits initially were investigated by means of transmission electron microscopy (TEM). The results showed that the volatile species generated by hot corrosion accelerated internal oxidation in the internal voids. The alloys suffered severe subscale attack at 750 and 800°C because a protective alumina scale was not formed. The morphology of attacked subscale can be divided into three layers. The interconnecting voids in the outer subscale are finer and denser than those in the inner subscale. The products inside the voids of the outer subscale are metal oxides, while the oxides inside the voids of the inner subscale are filled with fine Fe3O4 particles. However, due to the formation of an aluminum-rich oxide scale at 850°C, only a small amount of internal oxidation was generated in the subscale, which provided the best corrosion resistance in this study.  相似文献   

11.
Oxidation tests of rare-earth-modified and Ti-modified Fe–20Cr alloy foils, which are under consideration for catalytic converter supports, were performed in a synthetic exhaust-gas atmosphere (N2+H2O+CO2) between 900°C and 650°C. Between 900°C and 750°C, the rare earths had no effect on oxide growth rates while Ti increased growth rates. Oxide growth rates for the rareearth alloys at 800°C and 750°C are much lower than those found in the literature for oxidation of Fe–Cr alloys or pure Cr in O2-rich atmospheres. The slow growth rates for the rare-earth alloys agree with literature data for oxidation of stainless steels containing >20% Cr in wet atmospheres and are caused by growth of an oxide scale only one grain thick. At temperatures 700°C, Fe–20Cr alloys grow massive Fe oxides; however, this can be suppressed by adding rare earths or Ti. To ensure good oxide adherence, free sulfur must be eliminated in the alloy by tying it up with a reactive-element addition. Both Ti and the rare earths can be used to tie up S, but the rare earths are more effective. For converter applications, the optimum alloy composition may contain rare earths for good oxide adherence and a small amount of Ti to suppress growth of Fe-rich oxides.  相似文献   

12.
《Intermetallics》2002,10(1):73-84
Iron aluminides produced by the electroslag refining technique, having the compositions: (1) Fe–16Al–1C, (2) Fe–10Al–1C, and (3) Fe–8Al–1C were used to investigate the effect of Al on the oxidation behaviour of the Fe–1C–Al system at 700 to 1000 °C. Prior to oxidation studies, phase and microstructure of alloys were analysed. The carbide phase, Fe3AlC0.69, was found to be distributed in the Fe3Al matrix in alloy 1 and α (Fe–Al) matrix in alloys 2 and 3. The low Al content alloys displayed inversion in the oxidation kinetics below 800 °C, while, high Al content alloy displayed inversion phenomena at 1000 °C. The mechanism involving inversion in oxidation kinetics was found to be different in the two cases. In the former, it was attributed to the preferential oxidation of Al, while in the latter, to the phase transformation within the Al2O3. Carbides in the alloy having low Al content showed instability during oxidation.  相似文献   

13.
The oxidation of two Ni–Nb alloys containing 15 and 30 wt.% Nb has been studied at 600–800° C in H2–CO2 mixtures providing an oxygen pressure of 10–24 atm at 600° C and 10–20 atm O2 at 700 and 800° C, these pressures being less than the dissociation pressure of nickel oxide. The scales formed on both alloys at 600 and 700° C show only a region of internal oxidation composed of a mixture of alpha nickel and niobium oxides (Nb2O5 or/and NbO2), which formed from both the metal phases present, i.e., Ni8Nb and Ni3Nb. Only small, or even no, Nb depletion was observed in the alloys close to the interface with the zone of internal oxidation at these temperatures. On the contrary, samples of both alloys corroded at 800° C produced a continuous external scale of niobium oxides without internal oxidation. The corrosion mechanism of these alloys is examined with special reference to the effect of the low solubility of niobium in nickel.  相似文献   

14.
The isothermal high-temperature oxidation behavior of Fe3Al-based iron aluminides in oxygen has been studied. Fe–25Al was oxidized at 1225, 1330, 1425 and 1530 K, while Fe–28Al, Fe–24Al–5Cr, Fe–24Al–5Ti, Fe–28Al–2Cr and Fe–30Al–4Cr (all compositions in atom percent) were oxidized at 1330 K. The weight gain data were analyzed and rate constants (kp) determined by assuming a parabolic rate law. The variations of instantaneous parabolic rate constant with time reflected the complexity of the oxidation behavior. These have been attributed to the changes taking place in the nature and properties of the scale as a function of time. The values of kp for oxidation of Fe3Al were one to two orders of magnitude lower than those for Ti3Al-based intermetallics. As revealed by X-ray diffraction, the scale formed on Fe–25Al was predominantly α-Al2O3 at higher temperatures, while θ-Al2O3 was observed after oxidation at lower temperatures. The observed kinetics matched with α-Al2O3-formation kinetics at higher temperatures and θ-Al2O3-formation kinetics at lower temperatures. For all the other intermetallics, only α-Al2O3 was identified at 1330 K. The whisker morphology of θ-Al2O3 and the ridged morphology of α-Al2O3 were confirmed by scanning electron microscopy. Alloying with Cr or Ti increased the oxidation rate of iron aluminides, especially during the initial stages. Addition of Ti changed the nature, color, and morphology of the scale, leading to improved adherence.  相似文献   

15.
Several features of the microstructure and the adherence of alumina scales formed on Fe–Cr–Al and Fe–Cr–Al–Y single- and polycrystalline alloys after oxidation at 1000°C were examined. The convolutions of the scale and especially of the scale/alloy interface are thought to be the major reason of poor spallation resistance of scales on the yttrium-free alloy. The flat oxide scale on the even interface of the yttrium-doped alloy, on the contrary, exhibits excellent adherence upon cooling. Interfacial cavities observed on the Fe–Cr–Al alloy result from the scale undulation under compressive growth stresses. The shape and the number of cavities depend on the initial surface orientation and most probably reflect a balance between the interfacial energy of convoluted substrate in contact with the oxide layer and the energy of separated surfaces.  相似文献   

16.
Thin Y2O3 films were deposited by the electrochemical deposition-pyrolysis process on Fe–25Cr and Fe–25Cr–10Al alloys. The influence of the films on the oxidation behavior of the alloys was studied at 850°C and 1000°C. The results showed that Y2O3 films remarkably decreased the oxidation rate of Cr2O3-forming alloys and spallation of the scales, but they did not decrease the oxidation rate of the Al2O3-forming alloys, although they do reduce the spallation of Al2O3 scales. Y2O3 films remarkably change the morphology of the scales on both alloys, depending on the oxidation temperatures. These results show that the reactive-element effects of Y2O3 films on the Cr2O3 formers and Al2O3 formers are different.  相似文献   

17.
Ruchuan Yin 《Corrosion Science》2005,47(8):1896-1910
Carburization of 310 stainless steel has been investigated after cyclic exposures at high temperatures 800-1100 °C in a 2%CH4/H2 carburizing gas mixture for 500 h duration. A thermodynamic analysis indicates that 1000 °C is an approximate boundary temperature, below which the environment should result in mixed oxidizing/carburizing behavior, while above this temperature reducing/carburizing behavior should occur. The experimental results agree well with the thermodynamic analysis. Below 1000 °C, 310SS suffered external carburization, oxidation, and internal carburization. In excess of 1000 °C, extensive external carburization occurred and internal Cr-carbides disappeared. Cr segregation is proposed to interpret the effect of temperature on the continuity of an external scale layer and carburization behavior.  相似文献   

18.
The oxidation kinetics of Rh were measured in air at 1 atm. in the temperature range 600–1000°C. The oxidation weight gain proceeds logarithmically at the lower temperatures (600°C, 650°C) followed by a transition to power law behavior at the higher temperatures (800°C). The logarithmic growth kinetics result from thickening of a hexagonal Rh2O3 scale. The transition from logarithmic to power law growth kinetics occurs in the range 700–800°C, and reflects thickening of hexagonal and orthorhombic Rh2O3 scales. Above 800°C, the growth kinetics result from thickening of a predominately orthorhombic Rh2O3 scale. At 1000°C the oxide becomes volatile, leaving the metal surface exposed.  相似文献   

19.
Titanium aluminide (Ti3Al–Nb) has potential for high-temperature applications because of its low density and high-temperature strength. This research is aimed at improving the high-temperature oxidation resistance of a Ti3Al–Nb alloy by modification of its composition. The oxidation rates of Ti3Al–Nb alloys were measured from 600 to 900°C in air. The oxide layer was examined by X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The experimental results reveal that alloys with added Nb tend to form denser oxide layers and that oxidation rate can be reduced by increasing Nb content (up to 11 at.% in this study), which is in good agreement with other investigators. The only exception is a Ti65Al25Nb10 alloy, which shows better oxidation resistance than the commercial Ti65Al24Nb11 alloy. The oxidation resistance of Ti65Al25Nb10 alloy can also be improved slightly by the addition of small amounts of Si or Cr. An increase in the oxidation resistance of Ti65Al25Nb10 alloy containing Y was observed at 900°C but not at 800°C or below. The parabolic oxidation rate equation is adequate to describe the high-temperature oxidation reaction of the Ti3Al–Nb alloys in the atmosphere.  相似文献   

20.
The corrosion of M–Nb alloys based on iron, cobalt, and nickel and containing 15 and 30 wt% Nb has been studied at 600–800°C under low oxygen pressures (10–24 atm at 600°C and 10–20 atm at 700–800°C). Except for the Co–Nb and Ni–Nb alloys corroded at 800°C, which formed external scales of niobium oxides, corrosion under low O2 pressures produced an internal oxidation of niobium. This attack was much faster than expected on the basis of the classical theory. Furthermore, the distribution of the internal oxide in the alloys containing two metal phases was very close to that of the Nb-rich phase in the original alloys. These kinetic, microstructural, and thermodynamic aspects are examined by taking into account the effects of the limited solubility of niobium in the various base metals and of the two-phase nature of the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号