首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
为何超原子如此重要?从发展过程来体会,是因为终于可以把纷繁复杂的团簇结构以量子力学属性实现物理规律把握,从而为以团簇作为基元的物性表征与调控包括相关的制造和功能应用提供了基于原子层次的抓手. 因此可以认为,由团簇科技发展到超原子的物理学研究是必然的,所以,我们提出了超原子物理学的概念和范畴. 超原子作为归属于分子的多原子复杂系统,它的电子结构与原子有相近性,凸显了超原子系统中相互作用有深刻且丰富的物理内涵. 依托于原子物理学的巨大成就,将原子层次的科技能力结合到超原子研究上,将开辟新的领域方向,促进从结构出发的传统研究思路转变到以功能为核心的研究范式,从而带来新的发展机遇.  相似文献   

3.
原子光学是当前研究得比较热的学科,由于原子激光冷却技术和纳米技术的成熟,原子光学朝着微型化和集成化的方向发展.文章主要介绍了当前集成原子光学的一个焦点——原子芯片及其最新实验进展:包括不同形式的原子导引方式,当前原子芯片的实验工作,原子芯片在玻色—爱因斯坦凝聚(BEC)研究中的应用,以及原子芯片在其他方面的应用前景.  相似文献   

4.
介绍了原子物质波的聚焦的基本原理,即原子透镜的工作原理,又对几种类型的原子透镜及其对原子物质波聚焦的优劣性进行了介绍,描述了原子透镜在原子光学中的应用。  相似文献   

5.
吴晃 《物理》1994,23(3):152-158
综述了近年来原子干涉仪和原子光学研究领域研究领域工作的最近进展。重点介绍了德布罗意原子物质波干涉仪的基本物理原理,原子的杨氏双缝干涉实验,利用受激拉曼跃迁的原子干涉仪和Ramsey原子干涉仪。  相似文献   

6.
原子捕集原子吸收法进展   总被引:3,自引:1,他引:2  
  相似文献   

7.
8.
原子激光器与非线性原子光学:现代原子物理学的新进展   总被引:2,自引:0,他引:2  
邓鲁 《物理》2000,29(2):65-68,118
介绍了当前原子物理实验研究的两项最新突破:准连续全方位可调谐原子激射器(又称原子激射器)以及世界第一个非线性原子光学实验。前者在实现高亮度、高相干性原子激射器的研究方面迈出了极其重要的一步,后者则首次证明了物质波的多波混频效应,从而开辟了一个崭新的研究领域。  相似文献   

9.
原子光刻     
与光子和电子不间,原子的激发亚稳态具有方便操作的内能态结构,这使利用内能态的光学淬灭原理实现光刻技术成为现实.基于原子光学的中性原子束光刻技术是下一代光刻技术(the next generation lithography,NGL)的一种,它可分两种途径实现:激光驻波原子直沉积技术和亚稳态中性原子光刻技术.前者可以实现图案的纳米尺度特征、大面积平行沉积和高分辨率;后者结合有效的抗蚀剂,同样可以实现纳米图形制造,在基板上获得的尖锐边缘分辨率目前可达40 nm.两种途径的原理相差甚远,但最终获得的结果相似.  相似文献   

10.
随着原子激光冷却、囚禁与操控技术以及微米、纳米微电子制作技术的快速发展与不断完善,一个新兴的原子光学分支学科一“集成原子光学及其原子芯片”正在形成。本文重点介绍了集成原子光学及其原子芯片的集成方案、实验结果及其最新进展:包括表面微结构原子光学元器件、微磁结构集成原子光学、微光结构集成原子光学和微磁光结构集成原子光学及其原子芯片的设计方案与微制作技术及其最新实验结果。最后,简单总结了原子芯片的设计原则,讨论了芯片设计与研制中尚待解决的问题,并就集成原子光学的潜在应用及其未来发展作一简单展望。  相似文献   

11.
采用基于量子力学的分子动力学方法,模拟了高能粒子辐照导致钨表面的溅射和结构损伤.结果显示,当PKA能量高于200 eV且入射角度大于65°时开始产生溅射原子,当入射角度在45°-65°之间时,钨表面因受辐照而导致的空位数目最少.因此,当PKA入射角度取在45°-65°之间时,可以有效地降低辐照导致的钨表面的结构损伤.还发现钨表面含有间隙原子时会加剧表面原子溅射,而包含空位原子且PKA取在空位附近时则会抑制表面原子的溅射.  相似文献   

12.
Sputtering of Cu single-crystal and polycrystal targets by 27 keV Ar ions has been simulated using the new binary collision cascade computer program OKSANA. The sputtering yield, the sputtering and reflection efficiencies, and the absolute and relative contributions to sputtering from various components have been calculated in a broad range of incidence angles. The obtained angular dependences of the sputtering yield have proved to agree with experimental data. Some features of sputtering due to semichannel focusing of incident particles have been found. The contributions to sputtering from several types of linear collision chains and from the primary knock-on atoms are considered in most detail. It has been shown, in particular, that the pure focused, pure defocused, and mixed focused-defocused collision chains contribute noticeably to sputtering. The contribution from the primary knock-on atoms is angle-dependent and reaches its maximum in the range of glancing angles for both single-crystal and polycrystal targets.  相似文献   

13.
Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input. Received: 23 June 2000 / Accepted: 12 December 2000 / Published online: 3 April 2001  相似文献   

14.
《Physics letters. A》2002,295(1):55-59
Damaging carbon nanotube upon energetic irradiation has been modeled with molecular-dynamics simulations. The angular dependence of the threshold energy of the primary knock-on atom (PKA) escaping from the tube is investigated in the initial PKA directions spanning half space. The average value of the threshold energy is calculated to be 19.3 eV. The simulations provided a detailed picture of the damaging processes, in which four mechanisms were revealed. The interactions between carbon atoms are described with the Tersoff mode modified to match a screened Coulomb potential at short range.  相似文献   

15.
张超  王永亮  颜超  张庆瑜 《物理学报》2006,55(6):2882-2891
采用嵌入原子方法的原子间相互作用势,通过分子动力学方法模拟了低能Pt原子与Cu,Ag,Au,Ni,Pd替位掺杂Pt(111)表面的相互作用过程,系统研究了替位原子对表面吸附原子产额、溅射产额和空位缺陷产额的影响规律,分析了低能沉积过程中沉积原子与基体表面的相互作用机理以及替位原子的作用及其影响规律.研究结果显示:替位原子的存在不仅影响着沉积能量较低时的表面吸附原子的产额与空间分布,而且对沉积能量较高时的低能表面溅射过程和基体表面空位的形成产生重要影响.替位原子导致的表面吸附原子产额、表面原子溅射以及空位形 关键词: 分子动力学 低能粒子 替位掺杂 表面原子产额 溅射 空位  相似文献   

16.
The low-energy bombardment of Pt (1 1 1) surface by Cu atoms with various incident angles (θ) is studied with MD simulations. In the case of near-normal incidence (θ≤20°), the result of energy deposition is similar to that of θ=0°. In contrast, in the case wherein the incident angles are higher than 60°, the incident atom cannot penetrate through the first layer and is scattered directly on the surface. The low-energy deposition has no obvious effect on the substrate. For 20°≤θ≤60°, the oblique incidence contributes to uniformity of nucleation and layer-by-layer growth of film as well as the layer-by-layer removal of atoms in the surface layers. Based on our MD simulations, the mechanism behind the deposition and thin film formation is related to the horizontal component and the vertical component of the impact momentum.  相似文献   

17.
In the context of studies on long-time storage of irradiated spent fuel, molecular dynamics simulations have been carried out in order to understand the physical phenomena, on the atomic scale, linked to modifications and damage that the uranium dioxide structure undergoes during α-decay irradiation in repository conditions. Simulations of atomic displacement cascades over an energy range from 1 to 20?keV for the initial primary knock-on atom (PKA) do not show any amorphization of the structure in agreement with what has been found experimentally, and there is very little correlation between the initial orientation of the PKA and the cascade morphology. The number of Frenkel pairs, as a function of the initial energy of the PKA, exhibits a power-law behaviour with an exponent of 0.9 which is contrary to the theoretical linear Norgett–Robinson–Torrens law. Finally, for both species the vacancies have a tendency to aggregate and cluster near the core of the cascade while interstitial atoms are preferentially located at the periphery of the branches corresponding to subcascades.  相似文献   

18.
The sputtering yield angular distributions have been calculated on the basis of the ion energy dependence of total sputtering yields for Ni and Mo targets bombarded by low-energy Hg+ ions. The calculated curves show excellent agreement with the corresponding Wehner's experimental results of sputtering yield angular distributions. This fact clearly demonstrates the intrinsic relation between the ion energy dependence of total sputtering yields and the sputtering yield angular distribution. This intrinsic relation had been ignored in Yamamura's papers [Yamamura, Y. (1982). Theory of sputtering and comparison to experimental data, Nucl. Instr. and Meth., 194, 515–522; Yamamura, Y. (1981). Contribution of anisotropic velocity distribution of recoil atoms to sputtering yields and angular distributions of sputtered atoms, Rad. Eff., 55, 49–55.] due to some obvious mistakes.  相似文献   

19.
The yield of neutral excited atoms and low-energy photoelectrons generated by the electron dynamics in the combined Coulomb and laser field after tunneling is investigated. We present results of Monte-Carlo simulations built on the two-step semiclassical model, as well as analytic estimates and scaling relations for the population trapping into the Rydberg states. It is shown that mainly those electrons are captured into bound states of the neutral atom that due to their initial conditions (i) have moderate drift momentum imparted by the laser field and (ii) avoid strong interaction (“hard” collision) with the ion. In addition, it is demonstrated that the channel of capture, when accounted for in semiclassical calculations, has a pronounced effect on the momentum distribution of electrons with small positive energy. For the parameters that we investigated its presence leads to a dip at zero momentum in the longitudinal momentum distribution of the ionized electrons.  相似文献   

20.
The Durgapur cosmic ray spectrograph has been utilised to study the electromagnetic interaction of cosmic ray muons in iron in the momentum range 5–100 GeV/c. The dependence of the interaction cross section on the charge of the muons for the production of a single electron secondary due to the knock-on process and for two and more two electrons due to both knock-on and pair production has been investigated.The ratio of the interaction cross section for positive muons to that for negative muons in the magnetic-iron has been found to be 0.952 ± 0.045 for the production of one secondary particle. For production of two and more than two secondaries the ratios are 1.05 ± 0.09 and 0.91 ± 0.08 respectively. The present results do not indicate any charge asymmetry of cosmic ray muons in respect of electromagnetic interactions in iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号