首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complex permittivity and related AC conductivity measurements in the frequency range between 10−4 and 107 Hz are presented for composites of polycarbonate (PC) filled with different amounts of multiwalled carbon nanotubes (MWNT) varying in the range between 0.5 and 5 wt%. The composites were obtained by diluting a PC based masterbatch containing 15 wt% MWNT by melt mixing using a Micro Compounder. From DC conductivity measurements it was found that for samples processed at a mixing screw speed of 150 rpm for 5 min, the percolation occurs at a threshold concentration (pc) between 1.0 and 1.5 wt% MWNT. For concentrations of MWNT near the percolation threshold, the processing conditions (screw speed and mixing time) were varied. The differences in the dispersion of the MWNT in the PC matrix could be detected in the complex permittivity and AC conductivity spectra, and have been explained by changes in pc. The AC conductivity and permittivity spectra are discussed in terms of charge carrier diffusion on percolation clusters and resistor-capacitor composites.  相似文献   

2.
The rheological behavior of compression molded mixtures of polycarbonate containing between 0.5 and 15 wt% carbon nanotubes was investigated using oscillatory rheometry at 260 °C. The nanotubes have diameters between 10 and 15 nm and lengths ranging from 1 to 10 μm. The composites were obtained by diluting a masterbatch containing 15 wt% nanotubes using a twin-screw extruder. The increase in viscosity associated with the addition of nanotubes is much higher than viscosity changes reported for carbon nanofibers having larger diameters and for carbon black composites; this can be explained by the higher aspect ratio of the nanotubes. The viscosity increase is accompanied by an increase in the elastic melt properties, represented by the storage modulus G′, which is much higher than the increase in the loss modulus G″. The viscosity curves above 2 wt% nanotubes exhibit a larger decrease with frequency than samples containing lower nanotube loadings. Composites containing more than 2 wt% nanotubes exhibit non-Newtonian behavior at lower frequencies. A step increase at approximately 2 wt% nanotubes was observed in the viscosity-composition curves at low frequencies. This step change may be regarded as a rheological threshold. Ultimately, the rheological threshold coincides with the electrical conductivity percolation threshold which was found to be between 1 and 2 wt% nanotubes.  相似文献   

3.
This review paper focuses on the recent studies of electroactive polymer actuators that have a triple‐layered configuration composed of an ionic‐gel electrolyte layer sandwiched by nano‐carbon dispersed ionic‐liquid gel electrode layers (bucky‐gel actuator) for the purpose of development of practical devices. The review covers recent studies of the developments of the materials of the bucky‐gel actuators and their electromechanical modeling. In the final section, the application to an ultra‐thin and ultra‐light Braille display based on the bucky‐gel actuator is described. © 2013 Society of Chemical Industry  相似文献   

4.
The friction and wear behavior of polyimide (PI) composites reinforced with carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) were comparatively evaluated under dry sliding, water‐, oil‐ or alkali‐lubricated condition. The wear mechanisms of the composites were also discussed. Results indicate that, when comparison with the dry friction situation, PI‐based composites results lower friction coefficients and wear rates under oil‐ or alkali‐lubricated condition. The lowest wear rate of the CNT/PTFE/PI composite is recorded as 1.2 × 10−6 mm3/Nm during the composite sliding in alkali, which is only about 40% of the value sliding under dry friction condition. The worn surface of neat PI under dry sliding is characterized by severe adhesive wear, whereas abrasive wear is the main character for CNT/PTFE/PI composites. The worn surfaces of CNT/PTFE/PI composites sliding in oil or alkali lubricated condition are smoother than those under dry or water condition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
聚合物/碳纳米管复合材料的研究现状及在纤维中的应用   总被引:7,自引:0,他引:7  
对聚合物/碳纳米管复合材料的制备和性能研究现状及碳纳米管对聚合物的增强机理作了综述,并介绍了此纳米复合材料在复合纤维制备中的应用。  相似文献   

6.
The synthesized flame retardant 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (DV) was used to modify multiwalled carbon nanotubes (MWNTs). The results of FTIR, 1H‐NMR, and TGA measurements show that DV has been covalently grafted onto the surfaces of MWNTs, and the MWNTs‐g‐DV is obtained successfully. Transmission electron microscopy images show that a core‐shell nanostructure appears with MWNTs as the core and the DV thin layers as the shell, and the modified MWNTs with DV can achieve better dispersion than unmodified MWNTs in EVM matrix. Thermogravimetric analysis and cone calorimeter tests indicate that the thermal stability and flame retardant are improved for the presence of the MWNTs in EVM matrix. Moreover, the improvement is more evident for EVM/MWNTs‐g‐DV composite compared to unmodified MWNTs‐based composite, which can be attributed to the better dispersion of the DV‐modified MWNTs and to the chemical structure of the combustion residue. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Nanocomposites using copper nanowires (CuNWs) or carbon nanotubes (CNTs) as fillers with polypropylene (PP) as matrix were prepared by miscible solution mixing and precipitation method. Comparative studies on electrical conductivity and electromagnetic interference shielding properties were reported. On the conductivity curve, a plateau was found for both CuNW/PP composite and CNT/PP composite. The plateaus are located at a different concentration range for each composite type: for CuNW/PP composite, it is between 0.8 and 1.7 vol %, while for CNT/PP composite the plateau occurs in a narrower range between 0.4 and 0.6 vol %. The shielding effectiveness (SE) increases with increased concentration of fillers. CNT/PP composite has higher SE at concentrations less than 2 vol %; the two curves cross near 10 dB at this point and at concentrations higher than 2 vol %, CuNW/PP composite has higher SE. © 2014 American Institute of Chemical Engineers AIChE J, 61: 296–303, 2015  相似文献   

8.
In previous published research, network formation has been used to understand morphology and properties in polymer nanocomposites containing carbon nanotubes (CNTs) through measurements of rheological and electrical percolation thresholds, largely in thermoplastic matrices. In this research, these tools are explored as a means to understand network transport mechanisms and changes in CNT dispersion during curing in a thermosetting matrix. Specifically, rheological and electrical measurements were performed on the uncured nanocomposites, and electrical measurements were performed on the cured nanocomposites. The resulting data were applied to a percolation model. The results showed that the uncured resin played a limited role in mediating rheological transport and that little CNT aggregation occurred during curing. The results of this initial work suggest that such a combination of techniques is applicable to understanding dispersion changes resulting from curing and provides complementary insight to that provided by electron microscopy imaging of the same phenomenon.  相似文献   

9.
Electrically conductive polymer composites (CPCs) based on carbon nanotubes (CNTs) and polycarbonate were investigated regarding their electrical resistance change in different solvents like tetrahydrofuran, acetone, and ethyl acetate. CPCs containing 0.086 to 2.778 vol.% CNT were melt mixed using a twin-screw extruder under optimised conditions and subsequently compression-moulded.All sensing experiments revealed a resistance increase of CPCs having a U-shaped sample geometry during solvent immersion. Light microscopy investigations have shown that the diffusion of solvents into CPCs can be monitored in terms of a pronounced diffusion front, separating a swollen skin from the dry core. Based on this observed skin-core morphology, a model allowing the calculation of the time depending relative resistance change has been proposed considering several factors like diffusion parameters, composite characteristics, and geometrical values.Simulated response curves based on the model were compared with experimental data obtained on the CPCs and very good agreement was observed. Using this model the influence of CNT content and kind of solvent could be described exactly.  相似文献   

10.
林香萍  管萍  胡小玲  唐一梅 《现代化工》2011,31(9):14-16,18
与传统的溶剂相比,离子液体作为一种新型的绿色环保溶剂及优良电解质,在碳纳米管复合材料制备中得到了广泛的应用.对近年来利用离子液体合成出的碳纳米管/金属复合材料、碳纳米管/纤维素复合材料、碳纳米管/聚合物复合材料,以及在高分子离子液体、离子液凝胶中制备的碳纳米管复合材料进行了综述,介绍它们的优势及特点.对今后离子液体在碳...  相似文献   

11.
Poly(butylene terephthalate) (PBT) composites containing multiwalled carbon nanotubes (MWCNTs) were prepared using a melt‐blending process and used to examine the effects on the composite structure and properties of replacing PBT with acrylic acid‐grafted PBT (PBT‐g‐AA). PBT‐g‐AA and multihydroxyl‐functionalized MWCNTs (MWCNTs‐OH) were used to improve the compatibility and dispersibility of the MWCNTs within the PBT matrix. The composites were characterized morphologically using transmission electron microscopy, and chemically using Fourier transform infrared, solid‐state 13C NMR and UV‐visible absorption spectroscopy. The antibacterial and electrical conductivity properties of the composites were also evaluated. MWCNTs or MWCNTs‐OH enhanced the antibacterial activity and electrical conductivity of the PBT/MWCNT or PBT‐g‐AA/MWCNTs‐OH composites. The functionalized PBT‐g‐AA/MWCNTs‐OH composites showed markedly enhanced antibacterial properties and electrical conductivity due to the formation of ester bonds from the condensation of the carboxylic acid groups of PBT‐g‐AA with the hydroxyl groups of MWCNTs‐OH. The optimal proportion of MWCNTs‐OH in the composites was 1 wt%; in excess of this amount, the compatibility between the organic and inorganic phases was compromised. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
In this research, multiwalled carbon nanotube (MWNT) was oxidized and then modified to form carboxylic groups (? COOH) on the surface and the end of the tube. After that, the MWNT was added to polyimide matrix to enhance its mechanical and electrical properties by in situ polymerization and blending. The PI/MWNT composites were obtained by spin coating and multistep thermal curing process. The comparison of in situ polymerization and blending as well as the effect of unmodified and modified MWNT were discussed in this study. The results indicate that in situ polymerization is able to make a perfect dispersion by adding modified MWNT into polyimide matrix. Thermal and mechanical properties of the composites can be improved by hydrogen bonding interaction between the modified MWNT and polyimide matrix. Electrical resistance of the composites can be decreased to meet the criterion of electrostatic charge (ESC) mitigation as the surface resistance is reduced into the range of 106–1010 Ω/cm2 by adding modified MWNT. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A conductive polycarbonate (PC) composite containing 2 wt% multiwalled carbon nanotubes (MWNT) and pure PC were melt spun using a piston type spinning device. Different take-up velocities up to 800 m/min and throughputs leading to draw down ratios up to 250 were used. The composite material of PC with MWNT was prepared by diluting a PC based masterbatch consisting of 15 wt% MWNT by melt mixing in an extruder. The alignment of the nanotubes within melt spun fibers with draw down ratios up to 126 was investigated by TEM and Raman spectroscopy. The nanotubes align in their length axis along the fiber axis increasingly with the draw down ratio, however, the curved shape of the nanotubes still exist in the melt spun fibers. At higher draw down ratios, the MWNT started to align by reducing their curvature. Polarized Raman spectroscopy indicated that the D/D and G/G ratios parallel/perpendicular to the fiber axis increase for both MWNT bands in a similar manner with the draw down ratio. Interestingly, with increasing alignment electrical conductivity of the fibers is lost. Mechanical investigations revealed that at low spinning speeds elongation at break and tensile strength of the composite are lower than those of the pure PC. However, at the highest take-up velocity of 800 m/min the elongation at break is higher and true stress at break of the composite fiber is comparable to the pure PC fiber.  相似文献   

14.
ABSTRACT: Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits.PACS: 81.05.uj, carbon nanotubes, carbon-based materials, diamond/nanocarbon composites.  相似文献   

15.
Differential scanning calorimetry (DSC) was used to investigate the isothermal and nonisothermal crystallization kinetics of polyamide11 (PA11)/multiwalled carbon nanotube (MWNTs) composites. The Avrami equation was used for describing the isothermal crystallization behavior of neat PA11 and its nanocomposites. For nonisothermal studies, the Avrami model, the Ozawa model, and the method combining the Avrami and Ozawa theories were employed. It was found that the Avrami exponent n decreased with the addition of MWNTs during the isothermal crystallization, indicating that the MWNTs accelerated the crystallization process as nucleating agent. The kinetic analysis of nonisothermal crystallization process showed that the presence of carbon nanotubes hindered the mobility of polymer chain segments and dominated the nonisothermal crystallization process. The MWNTs played two competing roles on the crystallization of PA11 nanocomposites: on the one hand, the MWNTs serve as heterogeneous nucleating agent promoting the crystallization process of PA11; on the other hand, the MWNTs hinder the mobility of the polymer chains thus retarding the crystal growth process of PA11. The activation energies of PA11/MWNTs composites for the isothermal and nonisothermal crystallization are lower than neat PA11. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

16.
本文综述了单壁碳纳米管的制备方法,重点阐述了化学气相沉积法的合成运用,并对目前碳纳米管在聚合物基纳米复合材料方面的研究做了综合阐述。  相似文献   

17.
The reduced graphene oxide/nonwoven fabric (rGO/NWF) composites have been fabricated through heating the NWF coated with the mixture of GO and HONH2·HCl at 130°C, during which the GO is chemically reduced to rGO. Then the composites of polypyrrole (PPy)/rGO/NWF have been prepared through chemically polymerizing pyrrole vapor by using the FeCl3·6H2O adsorbed on rGO/NWF substrate as oxidant. Finally, multiwalled carbon nanotubes (MWCNTs) are used as conductive enhancer to modify PPy/rGO/NWF through dip‐dry process to obtain MWCNTs/PPy/rGO/NWF. The prepared composites have been characterized and their capacitive properties have been evaluated in 1.0M KCl electrolyte by using two‐electrode symmetric capacitor test. The results reveal that MWCNTs/PPy/rGO/NWF possesses a maximum specific capacitance (Csc) of about 319 F g?1 while PPy/rGO/NWF has a Csc of about 277.8 F g?1 at the scan rate of 1 mV s?1 and that optimum MWCNTs/PPy/rGO/NWF retains 94.5% of initial Csc after 1000 cycles at scan rate of 80 mV s?1 which is higher than PPy/rGO/NWF (83.4%). Further analysis reveals that the addition of MWCNTs can increase the charger accumulation at the outer and inner of the composites, which is favorable to improve the stability and the rapid charge‐discharge capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41023.  相似文献   

18.
Frequency dependent investigations of conductivity and dielectric permittivity have been performed on composites of polypropylene (PP) containing different amounts of 2, 3.5, and 5 wt% of multiwalled carbon nanotubes (MWNTs) in the melt and during crystallization. The experiments were performed in a measurement slit die containing two dielectric sensors in plate-plate geometry, which was flanged to the outlet of a single screw laboratory extruder. AC conductivity and the related complex permittivity were measured in the frequency range from 20 Hz to 106 Hz after stopping the extruder (recovery after shearing) and during cooling (non-isothermal crystallization). For a sample with a MWNT content of 2 wt% the AC conductivity shows a tremendous increase with time after shearing was stopped. This conductivity recovery is explained by the reorganization of the conducting network-like filler structure, which was partially destroyed by the shear. The reformation kinetics of filler clusters is assumed to be due to a cooperative aggregation. For conductive fillers in a thermoplastic matrix the kinetics of cooperative aggregation is coupled to the electrical percolation. The reorganization of the percolation network can be related to reformation of (i) the local contact regions between the nanotubes (separated by polymer chains) and (ii) to the reorientation of nanotubes oriented in the shear flow. The conductivity recovery is less pronounced for samples with MWNT concentrations well above the percolation threshold. During cooling of the melt to temperatures below crystallization a significant decrease in the conductivity and permittivity was detected. This is consistently expressed in the conductivity and permittivity spectra and can be explained by reduction of the amorphous phase (high ion mobility) on expense of the crystalline phase and/or by crystalline regions in the contact region between tubes.  相似文献   

19.
S. Pegel  T. Villmow  G. Heinrich 《Polymer》2009,50(9):2123-481
Dispersion, distribution, and alignment of carbon nanotubes (CNT) in polycarbonate (PC) composites are quantified by means of statistical analysis of transmission electron microscopy (TEM) images. The analysed images originate from samples with 0.875 and 2 wt% CNT, processed by compression and injection moulding, respectively. The composites exhibit different microstructures with different electrical properties, depending on the processing parameters. By means of stereological approaches for projections of three dimensional fibre systems the CNT contents within the TEM samples are estimated. The tendency of CNT clustering as well as characteristic distances between the CNT and CNT clusters are quantified by evaluation of morphological functions. Furthermore, a correlation function is introduced to obtain a quantitative measure of CNT clustering within the isotropic compression moulded samples. For the injection moulded samples the correlation function is used to derive local orientation factors. The results underline that clustering of CNT can enhance and alignment of tubes can reduce electrical conductivity.  相似文献   

20.
A novel high‐performance material with enhanced electrical properties was obtained by tuning the phase morphology of poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI)/multiwalled carbon nanotube (MWCNT) composites. MWCNTs were selectively located in the TPI phase due to discrepant affinity of MWCNTs between PEEK and TPI. The dependence of the electrical properties of the PEEK/TPI/MWCNT composites on the phase morphology was investigated by changing the PEEK/TPI ratio, and the maximum conductivity was achieved with a PEEK/TPI ratio of 50/50, which could be explained by the selective location of MWCNTs and the co‐continuous phase morphology of the composites. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号