首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the role of boric acid as a cross-linking agent for a poly (vinyl alcohol) (PVA) film when the film is immersed in boric acid aqueous solution. DSC results show that the films with boric acid exhibit the higher glass transition temperatures than that of the PVA film without boric acid, when the films are dried after immersing in boric acid aqueous solutions with various boric acid concentrations, implying that boric acid penetrating into the films slows down the PVA molecular motion. Furthermore, simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction measurements were performed on the melting processes of the PVA films with boric acid. We found that the crystallite size increase originated from melting and recrystallization do not occur for the PVA films with boric acid, whereas in the case of the PVA without boric acid the crystallite size is enlarged in both directions parallel and perpendicular to the chain axis via melting and recrystallization on melting. These indicate that chemical reactions of boric acid to the PVA molecular chains in amorphous regions resulted in cross-linking points take place in boric acid aqueous solutions, inhibiting recrystallization on melting, because the cross-links slow down the PVA molecular motion and must not be included in the crystalline domains.  相似文献   

2.
Starch was crosslinked with poly(vinyl alcohol) (PVA) by boric acid. A suitable plasticizer and defoamer were added to obtain the brei. A film from the starch and PVA (SP film) was prepared by casting. The effects of various factors, such as the crosslinking temperature, the PVA content, and the amounts of glycerol and boric acid, on the tensile strength and breaking elongation were studied. The results showed that the SP film prepared by boric acid crosslinking had excellent mechanical properties. The film‐forming properties, transmittance, and water resistance of the SP film were also investigated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1394–1397, 2005  相似文献   

3.
Eco-friendly poly(vinyl alcohol) (PVA), PVA/boric acid, PVA/halloysite nanotubes (HNTs), and PVA/amino-functionalized HNTs (APTES-HNTs) films were fabricated by a solution casting technique. The samples were characterized by fourier transform infrared, X-ray diffraction, differential scanning calorimetry, scanning electron microscope, and energy-dispersive spectroscopy. The characterization results proved the chemical and physical interactions between the PVA and different additives. The viscoelastic behavior of the films was evaluated by DMA and creep analysis. The storage modulus, loss factor, and both αα and ββ transitions affected by APTES-HNTs as a potential filler to form effective cross-links. APTES-HNTs existence enhanced creep-recovery beyond expectations. Tensile and impact strength were measured to understand samples' mechanical stability. PVA/APTES-HNTs and PVA/boric acid showed more yield behavior after the elastic limit. Furthermore, the subsequent rupture and impact strength were increased significantly compared with neat PVA and PVA/HNTs. The viscoelastic and mechanical behaviors were linked to each other by the area under Tanδ curve and the work of rupture and impact strength, which their linear correlation coefficient is statistically significant at 95% confidence limits. It seems that the presence of APTES-HNTs provides new cross-links, which altered (improved) the physico-mechanical properties of PVA, offering a bionanocomposite suitable for further applications. From the literature, possible explanations are provided for these observations.  相似文献   

4.
Transient currents (charging and discharging currents) in poly(vinyl alcohol) (PVA)–poly(vinyl pyrrolidone) (PVP) polymer blend films were measured over the temperature range 30–150°C at field strengths of 2.32–23.2 × 106 Vm?1. Polymer films were prepared by the isothermal immersion technique. Activation energies were evaluated from quasi-steady-state currents. A single relaxation peak was observed both from isochronal currents and low frequency dielectric relaxation. Activation energies evaluated from these two methods are found to be in fairly good agreement. The polarization is considered to be due to space charge origin along with some contribution from dipolar groups. The maximum loss was observed in Sample I (PVA: PVP = 25:75), suggesting maximum heterogeneity in this blend ratio.  相似文献   

5.
The effect of syndiotactivity of poly(vinyl alcohol) (PVA) both on the formation and thermal stability of the complex formed in the amorphous phase of PVA films is investigated, and then a model of the complex is presented. The amount of the complex formed in syndiotacticity-rich PVA is much larger than that formed in atactic PVA under a given iodine-soaking condition, and the former complex has a higher thermal stability in the soaking solution than the latter. The complex formed in the amorphous phase is proposed to have such a structure as that in which a linear polyiodine I5? or I5? with a 3.1 A? periodicity is enveloped by four PVA segments of syndiotactic configuration with extended conformation. In this model, these four PVA chains participating in a complex are supposed to be fixed by interchain hydrogen bonds. The observed X-ray meridional intensity curve of iodinated PVA film can be explained by a series of two I5?. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The role of boric acid in the formation of poly(vinyl alcohol) (PVA)-iodine complexes in undrawn films has been investigated by using wide-angle X-ray diffraction (WAXD) and high-resolution solid-state 13C NMR spectroscopy. From UV-vis absorption spectroscopy, it is confirmed that boric acid is necessary for the formation of the complexes in films that are treated with I2/KI aqueous solutions at relatively low I2 concentrations. The WAXD profiles indicate that, irrespective of the presence of iodine, crystallite sizes perpendicular to the chain axis become smaller by the addition of boric acid in the swelling media. Moreover, small crystallites and surficial parts of larger crystallites may be partially dissolved in the swelling process with water and boric acid suppresses the re-crystallization in the drying process with or without iodine. The 13C spin-lattice relaxation time analysis reveals that there exist two components called the mobile and the less mobile components in the films and the latter component, which contains the complexes and the crystalline component, is increased in the fraction by the presence of boric acid. The evaluation of the CH resonance line shows that some of the intermolecular hydrogen bonds are broken by boric acid, which increases the intramolecular hydrogen bonds. The CH2 lineshape analysis also reveals that the gauche fraction is appreciably increased in the less mobile component by the addition of boric acid. These facts suggest that boric acid may promote the formation of PVA-iodine complexes particularly in the surficial areas of the crystallites probably by reducing the molecular mobility of the PVA chains by causing cross-linking among them.  相似文献   

7.
The dielectric constant ε′ and loss factor ε″ of deionized water and poly(vinyl alcohol) in aqueous solutions are measured in the frequency region 200 MHz to 20 GHz at four different temperatures (25, 35, 45 and 55 °C). Complex plane plots (ie ε″ vs ε′) are drawn to obtain the static dielectric constant ε0, high frequency dielectric constant ε, distribution parameter α and average relaxation time τ0. The variations of dielectric constants with increasing solvent concentration and temperature are discussed in terms of solute–solvent and solute–solute interactions. The average relaxation time τ0 of poly(vinyl alcohol) aqueous solutions is found to the very short. It is also observed that the relaxation time is almost independent of the viscosity of the solution. The effect of water concentration on macromolecular size, shape and flexibility of the molecular chain are discussed using the observed values of dielectric relaxation times at different temperatures. The possibility of multiple dielectric dispersion is also discussed with concentration variation. © 2000 Society of Chemical Industry  相似文献   

8.
Chitosan bicomponent fibers were prepared via the electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions with different concentrations. With a 4% acrylic acid aqueous solution, when the chitosan/poly(vinyl alcohol) mass ratios were lower than 80/20, electrospinning nanofibers could be obtained. With a 90% acrylic acid aqueous solution, when the chitosan/poly(vinyl alcohol) mass ratios were less than 95/5, good nanofibers could be electrospun. The average diameter of the nanofibers gradually decreased, and its distribution became narrower as the poly(vinyl alcohol) concentration increased. Chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions could be electrospun at various concentrations by the adjustment of the chitosan and poly(vinyl alcohol) concentrations. The effects of the viscosity and conductivity of the blend solution on the morphologies of the fiber mats were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5692–5697, 2006  相似文献   

9.
The infrared spectra of the films of syndiotactic-rich poly(vinyl alcohol) (s-PVA) prepared by the casting, frame, and bubble methods were obtained. The band at 705 cm?1 decreased with the increased inclination of the film plane to the direction of the irradiation of infrared rays and was related to the orientation of the molecules in the adsorbed phases of both sides of film.  相似文献   

10.
To further improve the processability of water plasticized poly(vinyl alcohol) (PVA), boric acid (BA), which can rapidly form reversible crosslinked structure with the hydroxyl groups of PVA, was adopted as a modifier, and the water states, thermal performance, and rheological properties of modified PVA were investigated. The results showed that ascribing to the formation of the crosslinked structure between PVA and BA, the content of nonfreezing water in system increased, indicating that the bondage of PVA matrix on water enhanced, thus retarding the tempestuous evaporation of water in system during melt process and making more water remained in system to play the role of plasticizer. Meanwhile, this crosslinked structure shielded part hydroxyl groups in PVA chains, leading to the further weakening of the self‐hydrogen bonding of PVA, and guaranteeing a lower melting point and higher decomposition temperature, thus obtaining a quite wide thermal processing window, i.e., ≥179°C. The melt viscosity of BA modified PVA slightly increased, but still satisfied the requirements for thermal processing, thus reinforcing the flow stability of the melt at high shearing rate. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43246.  相似文献   

11.
The electrochemical preparation of polypyrrole (PPY)–poly(vinyl alcohol) (PVA) conducting polymer composite films on an indium–tin oxide glass electrode from an aqueous solution containing a pyrrole monomer, a p‐toluene sulfonate electrolyte, and a PVA insulating polymer is reported. The prepared PPY–PVA composite films were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and conductivity measurements. The FTIR study showed that the composite of PPY and PVA formed through bond formation between PVA and the p‐toluene sulfonate dopant anion. The conductivity data of PPY–PVA showed that with increasing PVA concentration in the pyrrole solution, the conductivity of the prepared PPY–PVA film increased up to a certain level due to an increase in conjugation length, and later, it decreased with further increases in the PVA concentration in the solution due to a decrease in conjugation length. This was supported by the FTIR band intensity I1560/I1480. The TGA results show that the PPY–PVA polymer composite film was thermally more stable than the PPY film. A shielding effectiveness of 45.6 dB was exhibited by the PPY–PVA composite film in the microwave frequency range. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4107–4113, 2006  相似文献   

12.
Four types of polyvinyl alcohol (PVA)/iodine complex films were made using different boric acid treatments to prepare polarizing films having high durability under humid and warm atmospheres and to identify the effects of the boric acid treatment method on the formation of the PVA/iodine polarizing film. The four types of films were a PVA iodinated film(I), a PVA film that was iodinated and then treated with boric acid(I‐B), a PVA film that was treated with boric acid and then iodinated(B‐I), and a PVA film that was simultaneously treated with iodine and boric acid(I+B). The concentrations of I2/KI were 0.03, 0.05, and 0.07 mol/L, and the concentrations of boric acid were 0.1, 0.3, and 0.5 mol/L. Comparing four type films treated with 0.05 mol/L I2/KI and 0.5 mol/L boric acid, the conformation of PVA/iodine complexes for I‐B film were larger than the others. The degrees of polarization (ρ) of all of the films increased to very high levels (99.9%↑). The durability of I‐B was superior to B‐I or I+B, and the change in the ρ was below 5% because the boric acid treated after iodine treatment reduced the molecular mobility of the PVA/iodine complex chains through intracrosslinking, so that the PVA/iodine complex could not easily collapse. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The development of macroscopic nanofiber orientation and microscopic crystallite and molecular chain orientation have been investigated during uniaxial stretching of electrospun poly(vinyl alcohol) (PVA) non-woven nanofiber mats. Scanning electron microscopy and stress-strain/small-angle X-ray scattering show that the macroscopic nanofiber orientation significantly increases during the initial stage of deformation, and approaches a plateau on the way of stretching. Detailed analyses of the stress-strain/wide-angle X-ray diffraction measurement and polarized Fourier transform infrared spectroscopy indicate that the microscopic crystallite and molecular chain orientation rapidly increase at the initial stage of stretching due to macroscopic nanofiber orientation. At higher deformation, the microscopic modes of orientation continuously develop as a result of the nanofiber stretching. The complicated deformation process of non-woven nanofiber mats is discussed in terms of macroscopic nanofiber orientation and the microscopic crystallite and molecular chain orientation.  相似文献   

14.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The color change of an iodinated poly(vinyl alcohol) (PVA) film caused by physical deformation was investigated in this study. The color of a PVA film soaked in an aqueous potassium iodide (KI)/I2 solution was light yellow, but it turned light blue when the film was physically deformed. The ultraviolet–visible absorption spectrum of the iodinated PVA film extended uniaxially in air was measured at various extension levels. Without deformation, the film showed UV absorption bands at 210, 290, and 360 nm. However, under deformation, the film showed new visible light absorption bands at 440 and 620 nm. From the UV–vis absorption spectra of several iodinated solutions, we found that the absorption wavelength of iodine was affected by the cohesive energy of the solvents. The KI/I2 diethyl ether solution showed an absorption band at 460 nm, and this provided a clue to understanding the color change of the PVA–iodine complexes caused by physical deformation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43036.  相似文献   

16.
The uphill transport of boric acid in aqueous solutions through a thermal‐crosslinked poly(vinyl alcohol) (PVA) membrane was investigated. A normal permeation caused by the concentration difference of the boron along the PVA membrane was observed for equal pH conditions at both sides of the membrane, and higher flux was observed under an acidic condition at pH = 5.0 than under a basic condition at pH = 10.0. When the pH of one side is kept pH = 5.0 (acid side) and the other side was kept at pH = 10.0 (base side), uphill transport of boric acid from the acid side to the base side was observed under an equal initial concentration of both sides. Such an uphill transport was also observed against the concentration difference under the condition in which the initial concentration of the base side was higher than that of the acid side. The uphill transport could be explained by the difference in the permeation rates through the PVA membrane between B(OH)3, the dominant form under lower pH, and B(OH)4?, the dominant form under higher pH, which makes a complex with diols in PVA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1451–1455, 2007  相似文献   

17.
Gelation behavior of the solutions of poly(vinyl alcohol) (PVA), whose syndiotactic diad content was 52% and weight‐average molecular weight of PVA ranged from 89,000 to 186,000, in dimethyl sulfoxide (DMSO) was investigated in terms of shear rate, concentration, and molecular weight of the polymer. To trace time‐dependent gelation behavior, a programmed time sweep experiment was carried out by repeating the following procedure 3 times; 10 min of measurement followed by 5 min relaxation. All of the PVA solutions in DMSO exhibited time‐dependent rheological responses, particularly under low shear rate of 2 rad/s, indicative of the formation of physical structures. At high shear rate of 200 rad/s the rheological responses were independent of time. Referring to Winter's view on gelation, a weak shear produced a soft gel structure whereas a strong shear produced an irreversible strong gel. Gelation was more affected by molecular weight than by concentration over the period of shearing. At low frequency, relaxation time was increased with time, and then leveled off after prolonged shearing. At high frequency, however, little change of relaxation time was noticed. They can be interpreted as a consequence of formation of three‐dimensional gel structure through the polar interactions by hydroxyl groups whose strength was dependent on shearing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 465–471, 2006  相似文献   

18.
19.
Ternary composite films of poly(vinyl alcohol) (PVA), boric acid (BA), and detonation nanodiamond (DND) were prepared by aqueous solution method. Because of its excellent mechanical/thermal properties and low friction coefficient, DND is expected to offer PVA film superior performance if the puzzles of particle agglomeration in polymer matrix and fragile interface reaction between DND and PVA can be settled. BA was used as a crosslinking agent to form a strong network structure between DND and PVA. Investigation on microstructure of PVA/BA/DND films and bonding mechanisms therein shows that BA, DND, and PVA may crosslink by oxo‐bridges owing to the interaction of hydroxyl groups. The Young's modulus (E) of composite films was enhanced by nearly 3.3 times with only 0.8 wt % DND loading, and the antiwear, thermal stability, and waterproof properties can be significantly improved after the crosslinking. Meanwhile, the transparency of composite films can be well preserved even with large DND content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45449.  相似文献   

20.
The poly(vinyl alcohol)–acrylonitrile–2-hydroxy ethyl methacrylate (PVA–AN–HEMA) grafted latex membrane was synthesized by grafting AN and HEMA mixture on PVA in aqueous solution. The ceric ammonium nitric in nitric acid was was used as a catalyst. This membrane has well-balanced composition of hydrophilic and hydrophobic components and was proved by transition electron microscopy to process microstructure between continuous and disperse phases. The permeability of alcohol–water solution and separativity of phenol–water solution through this PVA–AN–HEMA membrane were studied. It was found that the permeation rate for aqueous solution as as alcohol–water was greater than that for pure water, and the separativity of phenol–water solution by pervaporation increased as the amount of PHEMA increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号