首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A CdTe detector with a Gd converter has been developed and investigated as a neutron detector for neutron imaging. The fabricated Gd/CdTe detector with the 25 μm thick Gd was designed on the basis of simulation results of thermal neutron detection efficiency and spatial resolution. The energy resolution of the Gd/CdTe detector is less than 4 keV, which is enough to discriminate neutron capture gamma rays from background gamma emission. The Gd/CdTe detector shows the detection of neutron capture gamma ray emission in the 155Gd(n, γ)156Gd, 157Gd(n, γ)158Gd and 113Cd(n, γ)114Cd reactions and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application.  相似文献   

2.
A fluorescent converter for fast neutron radiography (FNR) comprising a scintillator and hydrogen-rich resin has been developed and applied to electronic imaging. The rate of the reaction between fast neutrons and the converter is increased by thickening the converter, but its opaqueness attenuates emitted light photons before they reach its surface. To improve the luminosity of a fluorescent converter for FNR, a novel type of converter was designed in which wavelength-shifting fibers were adopted to transport radiated light to the observation end face. The performance of the converter was compared with that of a polypropylene-based fluorescent converter in an experiment conducted at the fast-neutron-source reactor YAYOI in the University of Tokyo.  相似文献   

3.
Theoretical examination of initial recombination of ions in muscle equivalent gel, walled high pressure ionization chambers for neutrons of 5–30 MeV indicates the potential of such instruments to measure both the neutron and gamma ray absorbed doses in high energy mixed neutron-gamma radiation fields currently used for neutron therapy.  相似文献   

4.
This work examines the response of pMOSFET dosimeters to ionizing radiation. The dosimeters were fabricated with gate oxides having a range of thicknesses varying from 0.69 μm for the thinnest oxide up to 2.3 μm for the thickest oxide. In separate experiments the dosimeters were irradiated by 60Co γ-rays and linac X-rays both with biassed and unbiassed gates. The effects on transistor characteristics were measured and analysed to show the relative contributions to the shift in the threshold voltage from trapped charge in the oxide and charges trapped at the silicon-silicon dioxide interface.  相似文献   

5.
Unlike other fields of toxicology, radiation protection has a dual system of quantities, one set for assessment and the derivation of authorised limits and another set for monitoring radiation performance and compliance. Neutrons are an important or dominant constituent of the radiation field around high energy accelerators and the evolution of the radiation protection quantities used to measure neutrons is described. In 1990 ICRP introduced a new quantity, the effective dose. E. with which to express its protection limits. E represented a radical departure from previous advice of the Commission, particularly in the manner by which it weighted the absorbed dose deposited by high LET radiations. This advice had profound consequences for neutron dosimetry. Over the past decade analyses have revealed logical flaws and inconsistencies in the definition of effective dose. These are briefly discussed with most emphasis being placed on inconsistencies in radiation weighting. Suggestions are made with a view to resolving these inconsistencies.  相似文献   

6.
A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Université Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect.  相似文献   

7.
A measuring system for dosimetry of neutrons generated around medical electron accelerators is proposed. The system consists of an in-phantom tissue-equivalent recombination chamber and associated electronics for automated control and data acquisition. A second ionization chamber serves as a monitor of photon radiation. Two quantities are determined by the recombination chamber--the total absorbed dose and the recombination index of radiation quality. The ambient dose equivalent, H*(10), or neutron absorbed dose in an appropriate phantom, can be then derived from the measured values. Tests of the system showed that a 0.5% dose contribution of neutrons to the absorbed dose of photons could be detected and estimated under laboratory conditions. Preliminary tests at the 15 MV Varian Clinac 2300C/D medical accelerator confirmed that the measuring system could be used under clinical conditions. The H*(10) of the mixed radiation was determined with an accuracy of approximately 10%.  相似文献   

8.
A new approach to the organization of software for sensor signal converters is considered. A solution to the problem using an operational system and modelling within that system is proposed.  相似文献   

9.
Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve.  相似文献   

10.
The prototype of an electronic personal neutron dosemeter based on superheated drop detectors is presented. This battery operated device comprises a neutron sensor, bubble-counting electronics and a temperature controller ensuring an optimal dose equivalent response. The neutron sensor is a 12 ml detector vial containing an emulsion of about 50,000 halocarbon-12 droplets of 100 microns diameter. The temperature controller is a low-power, solid-state device stabilising the emulsion at 31.5 degrees C by means of an etched foil heater. The microprocessor controlled counting electronics relies on a double piezo-electric transducer configuration to record bubble formation acoustically via a comparative pulse-shape analysis of ambient noise and detector signals. The performance of the dosemeter was analysed in terms of the requirements presently developed for neutron personal dosemeters. The detection threshold is about 1 microSv, while the personal dose equivalent response to neutrons in the thermal to 62 MeV range falls within a factor 1.6 of 13 bubbles per microSv.  相似文献   

11.
A neutron tomography instrument was designed and developed at the Royal Military College (RMC) of Canada with Queen's University to enhance these institutions' non-destructive evaluation capabilities. The neutron imaging system was built around a Safe Low-Power C(K)ritical Experiment (SLOWPOKE-2) nuclear research reactor. The low power and physical geometry of the reactor required that a novel design be developed to facilitate tomography. A unique rotisserie style rotary stage and clamping apparatus was developed. Furthermore, the low flux at the image plane (3×104 n cm−2 s−1), necessitated that the image acquisition and reconstruction processes be optimized. Tomographs of numerous samples were obtained using the new tomography instrument at RMC.  相似文献   

12.
Different neutron detectors have been developed in the past which exploit electrical and electrochemical processes in plastic foils and thin-film capacitors (namely metal-oxide-silicon devices) to trigger avalanche processes, which greatly facilitate the detection of neutron-induced charged particles. These detectors are: (i) spark-replica counter of neutron-induced fission-fragment holes in plastic films, thin-film breakdown counter of neutron-induced fission fragments, and electrochemically etched detectors of neutron-induced recoils in plastic foils. The major shortcomings of damage-track detectors for the measurement of low neutron fluencies, such as those of cosmic ray neutrons at civil aviation altitudes, are their large and unpredictable background and their small signal-to-noise ratio. These shortcomings have been overcome respectively by using long exposure times and large detector areas and counting coincidence-track events on matched pairs of detectors even for a few-micron-long tracks such as those of neutron recoils. The responses of all these detectors have been analysed both with neutrons with energy up to approximately 200 MeV and protons up to tens of gigaelectron volts. Applications of these detectors for the cosmic ray neutron dosimetry and/or spectrometry will be mentioned.  相似文献   

13.
This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating personal dose equivalent. A considerable over-response was noted in a few cases.  相似文献   

14.
A neutron spectrometry and dosimetry measurement system has been developed based on a different design of the divided regions for a sphere, with three position-sensitive counters. The characteristics of the measurement system have been investigated in the reference radiation fields of Am-Be and (252)Cf sources. When realistic input spectra are used for the unfolding, the overall deviations of the calculated results for four dosimetric quantities are less than +/-10%. The results of other input spectra are also discussed in this report.  相似文献   

15.
A technique is described for the preparation of high purity niobium for use in fast neutron dosimetry. Based on results of known purification processes for niobium, an optimized method has been developed, consisting of: (1) a double electrolytic refining in an eutectic lithium-, sodium-, potassium-fluoride melt, containing fluoro-potassium niobate (K2NbF7), (2) electron beam float zone melting (EBFZM) in ultra high vacuum (UHV) and (3) UHV treatments. Starting with EBFZM of niobium of commercial quality (140 μg/g Ta, 35 μg/g W) the tantalum and tungsten contents were reduced by a first electrolysis to approximately 4 and 4 × 10?2 μg/g, respectively. For a second electrolytic refining using a salt bath with extremely low tantalum and tungsten contents, this material was subjected to an additional EBFZM process. The niobium metal produced by this step was three times zone melted to reduce those elements (e.g. Fe, Co, Ni, O, N) which increased during the electrolyses. Material produced by this technique has impurity concentrations below 0.4 μg/g of tantalum and 10?2 μg/g of tungsten. The concentration of the interstitials (C, O, N except H) is below the detection limit of classical analytical methods. A further reduction of the interstitials by annealing treatments in UHV of this material resulted in an electrical residual resistivity ratio (RRR) ρ(295 K)/ρ(4.2 K) = 24 500 indicating an impurity concentration far below 1 μg/g.  相似文献   

16.
The characteristics of thermoluminescence dosemeters (TLDs) regarding the determination of photon and neutron absorbed doses were investigated in a thermal neutron beam. Harshaw TLD-100 (LiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti) were compared with similar materials from Solid Dosimetric Detector and Method Laboratory (People's Republic of China). Harshaw TLD-700H (7LiF:Mg,Cu,P) and aluminium oxide (Al2O3:Mg,Y) from Hungary were also considered for photon dose measurement. The neutron sensitivity of the investigated materials was measured and found to be consistent with values reported by other authors. A comparison was made between the TL dose measurements and results obtained via conventional methods. An agreement within 20% was obtained, which demonstrates the ability of TLD for measuring neutron and photon doses in a mixed field, using careful calibration procedures and determining the neutron sensitivity for the usage conditions.  相似文献   

17.
A CMOS active pixel sensor, originally designed for the tracking of minimum ionising charged particles in high-energy physics, has been recently used for the detection of fast neutrons. Data were taken at the IRSN Cadarache facility with a (241)Am-Be ISO source and a polyethylene radiator. A high-intrinsic efficiency (1.2 x 10(-3)) has been obtained. It is in good agreement with both calculations and a MCNPX Monte Carlo simulation. This experiment paves the way for a fully electronic personal neutron dosemeter.  相似文献   

18.
A solution of 93mNb in 1M HF + 1M HNO3 was dispensed into teflon containers and distributed to several laboratories to allow a definitive measurement of the emission probability for the 17 keV K X-rays. The material was characterized for stability, activity concentration, and K X-ray emission rate. The activity concentration of the solution was measured by liquid-scintillation counting, with an estimated uncertainty (one standard deviation) of 0.76%. The K X-ray emission rate was measured in five laboratories using three different detector types: defined solid-angle photon detector, a 4π pressurized proportional counter, and calibrated semiconductor photon spectrometers. The K X-ray emission-rate value for the five laboratories had an estimated uncertainty (one standard deviation) of 1.9%. Combining the activity and emission rate values gives a X-ray emission probability of 0.1112±0.0022.  相似文献   

19.
Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a (6)LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H(10) of (239)PuBe and (241)AmBe were experimentally obtained and compared with those determined with the artificial neural networks.  相似文献   

20.
Modern ionising photon dosimetry is essentially entirely based upon gas-filled cavity determinations. For photons, ion chamber response is largely independent of photon energy almost perfectly transforming absorbed dose in the gas to the surrounding media. Absolute uncertainties are <1-2%. For fast neutron dosimetry, this is certainly not the case. Interpretation of the response of the cavity filling material, usually a gas, to the charged particle spectrum induced in the walls and interacting with the cavity gas is fraught with uncertainties. Despite these challenges, gas filled cavities surrounded by various mixtures, compounds and elements, have proved to be essential for integral determinations of the indirectly ionising neutrons, generating dosimetric quantities, such as kerma and absorbed dose. The transformation from gas response to wall dose is material dependent and varies with neutron energy. This study discusses recent advances in cavity response interpretation using the results from complex nuclear modelling of microscopic cross sections as well as estimates of secondary particle production enabling much improved cavity gas-to-wall media conversion factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号