首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为充分利用驴骨资源,利用酶解技术获得抗氧化性高和氨基酸含量丰富的酶解液。以驴骨泥为原料,以水解度、可溶性多肽得率为指标,筛选酶种类及双酶组合方式。采用正交试验优化双酶分段水解工艺参数,并对酶解液的游离氨基酸组成进行测定,通过测定酶解液的总还原能力、DPPH自由基清除能力、超氧阴离子自由基清除能力及羟自由基清除能力来评价其抗氧化活性。结果表明:风味蛋白酶和复合蛋白酶分段水解为最佳酶解工艺,其最适酶解条件:先在50℃、pH 7.0、加酶量1.5%、固液比1∶2(g/mL)条件下利用风味蛋白酶酶解3 h,随后加入复合蛋白酶,固液比1∶2(g/mL)、加酶量2.5%、酶解时间4 h,在此条件下酶解液水解度、可溶性多肽得率分别可达15.74%、20.34%;酶解液中含有17种氨基酸,其中丙氨酸、苯丙氨酸、缬氨酸、亮氨酸、酪氨酸、赖氨酸、精氨酸、脯氨酸、甘氨酸含量高于30 mg/100 mL;所得酶解液对超氧阴离子自由基、羟自由基和DPPH自由基都有很好的清除作用,其清除率最高分别达到31.65%、44.40%和71.43%。综上,双酶酶解驴骨泥蛋白可以制备高氨基酸含量和高抗氧化性的酶解液。  相似文献   

2.
小麦肽是小麦蛋白的主要酶解产物,抗氧化性是小麦肽的主要功能特性。为制备高抗氧化性小麦肽,选择碱性蛋白酶和风味蛋白酶分步酶解方式,以1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率、超氧阴离子自由基(O2-·)清除率、羟自由基(·OH)清除率等为指标,采用响应面法优化两种酶的最佳酶解工艺参数,并对最终酶解物进行超滤分级分离。结果表明,高抗氧化性小麦肽制备的最佳工艺参数:第1步碱性蛋白酶在底物含量11.2%、酶含量2 200 U/g、pH 8.5、温度55℃条件下酶解4.3 h;第2步风味蛋白酶在酶含量1 070 U/g、pH6.5、温度50℃条件下酶解2.2 h。最终酶解物DPPH自由基清除率为75.36%,O2-·清除率为74.51%,·OH清除率为76.29%,其中分子质量小于1 000 u组分自由基清除率最高。研究结果说明小麦蛋白酶解物具有良好的抗氧化活性,这可为小麦蛋白的深加工利用提供理论参考。  相似文献   

3.
目的:茶渣含有丰富的蛋白质,本研究旨在利用废弃茶渣,开发一种新型、绿色、天然的抗氧化剂。方法:利用碱溶酸沉法提取茶渣蛋白,酶法水解后对茶渣蛋白多肽复合物的体外抗氧化性进行研究,并与传统的合成抗氧化剂VC、BHT进行抗氧化效果的比较。结果:茶渣蛋白提取的最佳工艺为固液比1:40(W/V),提取时间60min,碱浓度0.1mol/L,提取温度90℃,最佳提取次数1次,最佳沉淀pH范围3.0~4.0,在以上条件下茶渣蛋白的提取率达76%;复合蛋白酶水解茶渣蛋白的最佳酶解工艺条件为:酶解温度50℃、最适pH7.0、酶/底物6000U/g、底物质量分数1.5%、水解时间20min;有限酶解所得酶解度为9%。0.1mg/mL多肽复合物DPPH·自由基清除率为90.30%,1.0mg/mL多肽复合物羟自由基(·OH)清除率为65.18%。在亚油酸体系中,多肽复合物的抗氧化性高于维生素C,略低于BHT。结论:茶渣蛋白多肽复合物具有较高的安全性及抗氧化性,有取代合成抗氧化剂的潜力。  相似文献   

4.
目的:根据鸽肉酶解产物的水解度与抗氧化性,探究最佳酶解工艺条件。方法:以水解度与ABTS自由基清除率为评价指标,探讨酶种类、加酶量、pH值、酶解温度、酶解时间、料液比和酶配比等因素对鸽胸肉酶解物抗氧化活性的影响,并对最优条件下制备的鸽肉酶解物进行总氨基酸含量测定。结果:中性蛋白酶与碱性蛋白酶为最佳复配用酶,m中性蛋白酶∶m碱性蛋白酶为3∶1、加酶量800 U/g、料液比(m鸽肉∶m复合酶)为1∶1.5、pH值7.5、酶解温度50℃、酶解时间3 h,所得样品在1 mg/mL质量浓度下对ABTS自由基清除率为36.10%,与预测值相近。最佳工艺所制得的肽中共检出16种氨基酸,总氨基酸含量的47.97%为必需氨基酸,抗氧化活性氨基酸的占比为29.27%。结论:该条件下制备的鸽肉肽具有一定的抗氧化活性与营养价值。  相似文献   

5.
黄昆  顾欣  王文江  李迪  李雅松  王建中 《食品工业科技》2012,33(18):107-110,115
以DPPH自由基清除率为指标,对风味蛋白酶酶解脱脂山杏仁的工艺进行研究。在单因素实验的基础上,采用二次回归正交旋转组合设计对其酶解工艺进行优化。建立脱脂山杏仁酶解液的DPPH自由基清除率与蛋白酶用量、酶解温度及酶解pH,3个实验因素的正交回归模型方程,通过频率分析法得到酶解最佳工艺条件:蛋白酶用量0.50%,酶解温度55℃,酶解pH7.2,酶解时间4h,最佳条件下酶解液的DPPH自由基清除率为56.8%。在此条件下,山杏仁蛋白酶解液清除DPPH自由基的IC50值为4.18mg/mL。经过超滤分离获得不同分子量的抗氧化多肽,用DPPH自由基清除率评价其抗氧化性,得分子量小于5ku的肽清除DPPH自由基能力最强。  相似文献   

6.
目的:以牡蛎干肉为原料,采用碱性蛋白酶酶解法制备牡蛎多肽,研究牡蛎多肽酶解工艺、抗氧化活性和相对分子质量分布。方法:以多肽含量为指标,运用单因素及正交试验优化牡蛎最佳酶解工艺;以1,1-二苯基-2-苦基肼(DPPH·)和羟自由基(·OH)的清除能力为指标,通过与Vc的对照试验研究牡蛎多肽的抗氧化活性;采用高效凝胶过滤色谱法(HPGFC)研究牡蛎多肽的相对分子质量分布。结果:牡蛎的最佳酶解条件为,料水比为1:18、pH值为10.0、温度为55 ℃、加酶量为800 U/g、酶解时间为3 h。在最佳酶解工艺条件下制得的牡蛎多肽,其相对分子质量范围为484~19582 u,多肽得率为46.27%。抗氧化性研究中,Vc在浓度为0.4 mg/mL时,对羟自由基的清除率为88.16%,在其浓度为0.004 mg/mL时,对DPPH·的清除率为76.95%。牡蛎多肽浓度为3 mg/mL时,对羟自由基的清除率为73.89%,在其浓度为5 mg/mL,对DPPH·的清除率为97.81%。结论:所确立的碱性蛋白酶最佳酶解工艺能较好地酶解牡蛎中的蛋白质,使其转化为具有良好的抗氧化活性小分子多肽。  相似文献   

7.
以栉孔扇贝为原料,以水解度和DPPH自由基清除率为指标,在单因素试验基础上,采用Box-Behnken方法,通过响应面试验优化酶解制备具有抗氧化性多肽的扇贝酶解液工艺,并对扇贝酶解液的DPPH自由基清除率、羟自由基清除率、总抗氧化活力和抗超氧阴离子活力进行测定。研究了蛋白酶种类、酶解时间、酶解温度、加酶量和固液比对栉孔扇贝酶解液抗氧化性的影响。结果表明:扇贝最佳酶解条件为选择中性蛋白酶、酶解时间4.7h、酶解温度43℃、加酶量3.5%、固液比(m/V)1∶5。在此条件下,DPPH自由基清除率达到68.21%,羟自由基清除率为33.74%,总抗氧化活力为0.086U/mg prot,抗超氧阴离子活力为106.27U/g prot。  相似文献   

8.
鳕鱼蛋白酶解工艺优化及其酶解液抗氧化研究   总被引:4,自引:0,他引:4  
目的:通过控制鳕鱼蛋白酶解以获得活性多肽,并研究其酶解液的抗氧化性。方法:用枯草杆菌蛋白酶对鳕鱼蛋白进行控制酶解,研究酶解温度、pH值、酶解时间、酶与底物浓度等对酶解效果的影响;采用三元二次旋转设计,优化酶解工艺;并通过分析酶解液对自由基的清除作用来判断其抗氧化性。结果:酶解的最佳条件为:脱脂鱼粉底物浓度肉水比为1:3,酶与底物比0.3%,pH8.0,温度65℃、酶解3h;该酶解液对羟基自由基、超氧自由基有很好的清除作用。结论:该研究结果对鳕鱼蛋白的开发利用提供了科学依据。  相似文献   

9.
为制备红花籽粕抗氧化活性肽,比较不同酶解工艺下产物的抗氧化性,研究AB-8大孔树脂分离工艺,对比分离前后多肽抗氧化性,结果表明:碱性蛋白酶Alcalase酶解产物抗氧化性最佳,测得还原力为1.755,DPPH自由基清除率39.84%,羟自由基清除率26.76%、超氧阴离子自由基清除率25.90%,多肽含量达到10.71 mg/mL;选择AB-8树脂分离,采用上样流速3 BV/h、上样量24 mL、80%乙醇洗脱、洗脱流速1.00 mL/min工艺分离,且AB-8分离后样品的DPPH自由基清除率、羟自由基清除率、超氧阴离子自由基清除率均有增强。  相似文献   

10.
运用响应面(RSM)分析法对酶解鸡肉蛋白制备抗氧化肽的工艺进行优化。在单因素试验的基础上,以还原能力和超氧阴离子自由基清除率为指标,研究酶解时间、加酶量、温度对木瓜蛋白酶酶解鸡肉蛋白的酶解液抗氧化性的影响。结果表明,酶解鸡肉蛋白制备抗氧化肽的工艺条件为pH6.0、液固比2:1(mL/g)、酶解时间6.15h、加酶量1200U/g、温度51.2℃,此时还原能力达到0.802,超氧阴离子自由基清除率达到73.9%。  相似文献   

11.
研究复合酶协同水解法制备绿豆抗氧化活性多肽的最佳条件,并探究其体外抗氧化活性。以水解度为指标,在单因素实验的基础上,以pH、温度、底物浓度、酶用量为实验因素,通过L9(34)正交实验设计筛选出制备绿豆多肽的最佳水解条件,使用DPPH自由基、超氧阴离子自由基及羟自由基的清除能力评价其抗氧化活性。结果表明:复合酶协同水解绿豆蛋白的最适反应条件为pH8.5,温度56 ℃,底物浓度8%,酶用量4%,水解度可达到33.95%。所得绿豆抗氧化多肽对DPPH自由基、超氧阴离子自由基及羟自由基清除率分别为82.8%、76.82%和56.85%,具有较强的抗氧化活性,在天然抗氧化剂和保健食品领域有一定的开发利用价值。  相似文献   

12.
利用木瓜蛋白酶水解核桃粕,得到核桃多肽。采用Box-Behnken中心组合分析优化水解条件,以羟基自由基和超氧阴离子自由基清除率为响应值,得到最优水解条件为:pH值6、温度50℃、酶解时间3h、底物浓度3%。在此条件下,核桃多肽对羟基自由基和超氧阴离子自由基的清除率分别为32.7%和24.6%。结果表明,木瓜蛋白酶水解核桃粕得到的核桃多肽具有一定的抗氧化活性;并且与VC做对比,其还原能力是VC的37.9%。  相似文献   

13.
以新鲜猪皮为原料,基于凝胶特性以羟脯氨酸含量为指标,对影响胃蛋白酶酶解过程的各个因素进行研究,通过Box-Behnken设计优化酶解工艺;以清除O2-•、•OH、H2O2能力和DNA损伤保护作用为指标研究酶解产物的抗氧化功能。结果表明:最佳酶解条件为加酶量0.25%、料液比1∶2(g/mL)、酶解时间1.65 h、酶解温度41.15 ℃,在此酶解条件下其产物清除O2-•的IC50值为20.19 mg/mL;清除•OH的IC50值为6.36 mg/mL;清除H2O2的IC50值为0.65 mg/mL;对DNA损伤保护作用的IC50值为1.86 mg/mL。  相似文献   

14.
大薯膳食纤维的提取及其对自由基的清除作用   总被引:1,自引:0,他引:1  
钟希琼 《食品科学》2010,31(24):139-141
以大薯粉为材料,设计四因素三水平正交试验,酶法提取膳食纤维。结果表明:0.6% 混合酶(α - 淀粉酶与糖化酶质量比为6:1)于80℃处理80min,0.6% 蛋白酶在60℃处理60min,对糖类、蛋白质的脱除作用较彻底。以体外实验研究不同质量浓度(5~35mg/mL)的膳食纤维鲜样对自由基的清除效果,设计3 种不同反应体系:1,1- 二苯基-2- 苦味肼基自由基(DPPH 自由基)、超氧阴离子自由基(O2·)、羟自由基(·OH)。结果表明:大薯膳食纤维对3 种自由基都有一定的清除能力,平均清除率分别为24.30%、51.08%、46.07%。即对3 种自由基清除能力大小顺序为:超氧阴离子自由基>羟自由基>二苯代苦味酰自由基。其中质量浓度15mg/mL 的膳食纤维对这3 种自由基的清除达到高峰,清除率分别为27.52%、60.0%、48.43%。  相似文献   

15.
响应面法优化制备南瓜籽抗氧化肽的工艺   总被引:1,自引:0,他引:1  
以南瓜籽分离蛋白为原料,采用酸性蛋白酶酶解制备南瓜籽抗氧化肽。选用加酶量、酶解温度、pH值、底物质量浓度、酶解时间作为研究对象,以酶解液对DPPH自由基的清除率为评价指标,在单因素试验的基础上,运用Plackett-Burman筛选试验确定显著因素,然后通过三因素三水平的Box-Behnken响应面分析法优化制备南瓜籽抗氧化肽的酶解工艺条件。结果表明:酸性蛋白酶酶解南瓜籽蛋白质的最佳工艺条件为:酶解温度50℃、pH2.5、酶解时间5h、底物质量浓度0.05g/mL、加酶量6000U/g pro,在此条件下,DPPH自由基清除率可达到92.82%。  相似文献   

16.
以南美白对虾加工下脚料(虾头虾壳)为原料,采用内源酶、中性蛋白酶,通过控制pH、水料比、酶解温度、酶解时间和酶用量等条件进行酶解,从而制取抗氧化酶解液,以还原能力、清除羟基自由基能力为指标选择最优的酶解条件。结果表明,内源酶最佳酶解条件为:pH为6,水料比为2∶1,酶解温度为40℃、酶解时间为6h,此时还原力为0.668,·OH清除率为67.24%;中性蛋白酶的最佳酶解条件为:酶用量为60U/g原料,pH为6,水料比为2∶1,酶解温度为60℃、酶解时间为5h,此时还原力为0.672,·OH清除率为68.43%。在最佳酶解条件下,两种酶解液的还原力与·OH清除率大小排列为:中性蛋白酶>内源酶,但两者相差不大,从经济能源的综合因素考虑,选用内源酶较合适。  相似文献   

17.
以曲拉干酪素为原料、水解度为指标,在酶解时间、酶解温度、pH值、曲拉干酪素质量浓度、酶添加量单因素试验基础上,采用响应面试验对碱性蛋白酶和胰蛋白酶酶解工艺条件进行优化,并对2 种酶解液的1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基、超氧阴离子自由基、羟自由基清除率,Fe2+、Cu2+螯合能力和还原力等抗氧化性指标进行比较。结果表明,碱性蛋白酶和胰蛋白酶分别在酶解时间3.8、2.5 h,酶解温度49.8、47.8 ℃,曲拉干酪素质量浓度60、35 g/L,pH 8.5、7.5,酶添加量140、2 900 U/g时水解度最大,为24.25%和13.57%。碱性蛋白酶解液超氧阴离子自由基清除率、Fe2+螯合能力显著低于胰蛋白酶解液(P<0.01);羟自由基清除能力高于胰蛋白酶解液(P>0.05);2 种蛋白酶酶解液在酶解液质量浓度1~5 mg/mL时,Cu2+螯合能力、DPPH自由基清除率和还原力随质量浓度均呈上升趋势,Cu2+螯合能力低于Fe2+螯合能力(P>0.05),DPPH自由基清除率和还原力二者差异显著(P<0.01)。2 种蛋白酶对酶解物抗氧化性指标影响不同,碱性蛋白酶酶解物抗氧化性相对较优。  相似文献   

18.
以高温豆粕为原料,采用超声辅助酶解法制备抗氧化产物。通过单因素和响应面试验优化,确定超声波辅助酶解处理高温豆粕的最佳工艺条件。超声波同步纤维素酶酶解,最佳条件为超声功率300?W、超声时间20?min、底物质量浓度8.36?g/100?mL、纤维素酶添加量666?U/g、酶解pH?4.1,得到的初步产物中可溶性多肽质量分数为(18.51±0.36)%,可溶性多糖质量分数为(10.83±0.32)%。然后将其水解物进一步用碱性蛋白酶水解,最佳条件为蛋白酶添加量61?900?U、酶解pH?9、酶解时间3?h、酶解温度56.4?℃,其产物可溶性多肽质量分数为(25.47±0.81)%,可溶性多糖质量分数为(13.22±0.49)%。按照最佳工艺条件对超声复合酶解处理后的高温豆粕产物进行乙醇沉淀、DEAE-Cellulose52离子交换层析以及SephadxeG-25凝胶色谱层析分离纯化,同时,对分离纯化后的各产物进行抗氧化活性检测,最终获得高温豆粕抗氧化产物,得率为2.18%,并且当产物质量浓度为1?mg/mL时,其铁离子还原力和超氧阴离子自由基清除能力分别为(0.495±0.042)mmol/g和(17.02±0.22)U/g。  相似文献   

19.
李诚  余霞  付刚  李华  陈代文 《食品科学》2011,32(23):147-151
以新鲜猪皮为原料,利用Alcalase水解胶原蛋白,并对影响Alcalase水解过程的各个因素进行研究,通过对水解度和超氧阴离子自由基(O2- ·)清除率的测定,确定Alcalase水解猪皮胶原蛋白的最适条件;研究在最适条件下制备的不同质量浓度的猪皮胶原蛋白酶解液对DPPH自由基和O2- ·的清除效果。结果表明:Alcalase水解猪皮胶原蛋白的最适条件为:pH7.5、温度55℃、酶与底物比6000U/g、底物质量浓度40mg/mL,水解时间4h;在此水解条件下,水解度达到9.55%,O2- ·清除率达到60.11%;在相应质量浓度10~50mg/mL范围内,猪皮胶原蛋白酶解液的DPPH自由基最大清除率为95.06%,IC50为3.89mg/mL;O2- ·最大清除率为65.89%,IC50为16.43mg/mL。猪皮胶原蛋白酶解液具有较强的自由基清除能力。  相似文献   

20.
目的:优化仿刺参抗氧化多肽的酶解工艺,并研究其对过氧化氢(hydrogen peroxide,H2O2)诱导的人脐静脉内皮细胞株EA.hy926损伤的保护效应。方法:以酶解产物的水解度、体外DPPH自由基清除率为指标,筛选出最适蛋白酶;在单因素实验基础上,选取温度、加酶量、pH作为影响因子,以体外DPPH自由基清除率为响应值,结合响应面试验优化酶解工艺条件;进一步探讨酶解多肽体外抗氧化活性。以MTS法检测低、中、高剂量组的仿刺参抗氧化多肽对H2O2诱导的血管内皮细胞损伤的保护作用,以MDA含量、SOD活力测定细胞氧化及抗氧化水平。结果:动物蛋白水解酶为最适蛋白酶,酶解工艺优化条件为:料液比1:20 g/mL、酶解时间2 h、酶解温度50℃、加酶量7000 U/g、pH7.5,该条件下制备的仿刺参多肽体外DPPH自由基清除率为68.81%,与模型预测值(68.35%),相对误差为1%,回归模型可靠。酶解多肽对DPPH自由基、羟自由基(·OH)、超氧阴离子自由基(O2-·)和ABTS自由基(ABTS+·)的半数抑制浓度IC50分别是9.01、0.63、10.89和20.53 mg/mL,说明其具有较好的体外抗氧化活性。选取200 μmol/L浓度H2O2建立细胞损伤模型,与H2O2组相比,中、高剂量组仿刺参抗氧化多肽能明显抑制H2O2诱导的血管内皮细胞氧化损伤,降低MDA含量,提高SOD活力。结论:采用动物蛋白水解酶酶解优化工艺制备的仿刺参抗氧化多肽对人脐静脉内皮细胞EA.hy926具有显著的保护作用并呈显著的剂量-效应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号