首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
动力电池热管理对电池的运行效率、寿命、可靠性至关重要。基于客户要求设计一款额定制冷量及制热量分别约为7 kW和12 kW的热管理机组,并对其性能进行试验研究。结果表明:制冷量及COP随进水温度、进水流量的增大而增大,在压缩机转速为4 000 r/min时,制冷量最高可达9. 5 kW,COP最大可达2. 5;当环境温度在30℃以下时,COP随压缩机转速的增大先增大后减小,当环境温度在30℃以上时,COP随压缩机转速的增大而减小;系统的平均降温速率约为2℃/min;当PTC的设定功率大于6 kW时,PTC的实际功率与设定功率的误差在10%以内。  相似文献   

2.
为研究变转速压缩机对复叠式热泵系统的影响,本文搭建了高温压缩机变转速的复叠式热泵实验台。通过实验研究了不同运行工况下系统排气温度、中间温度、制热量、功率及COP随高温压缩机转速的变化规律。结果表明:在冷凝温度为46℃,蒸发温度为-35℃~-10℃时,压缩机运行安全可靠;在冷凝温度为46℃,蒸发温度为-25℃,高温压缩机转速从1 200 r/min增至6 000 r/min,制热量提升了129. 7%,低温压缩机功率减少43.4%; COP随高温压缩机转速的增加呈先增大后减小的趋势,存在最大COP和对应的最佳高温压缩机转速。  相似文献   

3.
杨忠诚  苏林  于荣  方奕栋  李康  穆文杰 《制冷学报》2021,42(1):53-59+81
为研究低温时电动汽车热泵空调系统的制热性能,本文通过搭建空气源热泵空调系统实验台,实验研究了电动汽车热泵空调系统在环境温度为-10~0℃的低温工况下的制热性能,分析了压缩机转速(2000~5000 r/min)、HVAC总成进风量(300~400 m^3/h)和环境温度对该热泵系统性能的影响,最后通过推导公式,估算电动汽车在使用空调系统后的续航里程。实验结果表明:随着压缩机转速的增加,压缩机排气温度、排气压力和系统制热量均增加,而COP下降;当保持压缩机转速和环境温度不变时,HVAC总成进风量从300 m^3/h增至400 m^3/h,制热量增加约13.3%~26.0%,COP增加约0.03~0.80;在其他条件不变时,当环境温度从-10℃升至0℃,热泵空调系统的制热量增加约60.9%~71.0%,COP增加约0.51~0.63;通过公式进行计算,当环境温度为-10~0℃时,在达到相同制热量条件下,热泵空调系统可在PTC加热器的基础上使续航里程提高13.5%~20.8%。  相似文献   

4.
对一台空气源热泵热水器进行变环境工况试验,研究不同环境干球温度、湿球温度对系统制热量、功耗和COP等性能参数的影响。试验结果表明:在环境相对湿度保持不变时,环境干球温度由10℃上升到30℃,制热量、功耗和COP均提高,最大增幅分别达86.0%,17.8%和57.9%,吸/排气温度和压力等参数也有一定程度的上升;在环境干球温度保持不变时,环境湿球温度由11.6℃上升到18.4℃(相对湿度从34.9%上升到86.0%),制热量和COP随之上升,最大增幅分别达10.8%和8.1%,系统的功耗、吸/排气温度、吸/排气压力等参数没有明显变化;系统制热量对环境干球温度及湿球温度的敏感性均较系统功耗和COP大,在环境湿球温度变化范围内,系统功耗变化率为0.04%~1.4%,说明环境相对湿度对系统功耗的影响极小。  相似文献   

5.
开发CO_2跨临界汽车热泵,是解决R134a汽车热泵在低温环境下制热量不足、无法正常工作问题的有效措施。本文理论分析了影响CO_2汽车热泵性能的关键因素,在最低为-20℃的环境温度下实验研究了CO_2汽车热泵的性能。结果表明:开发的CO_2汽车热泵系统在低温环境下稳定运行,具有较好的制热性能;在相同压缩机转速条件下,室内进风温度对制热COP(COP_h)影响更大,室外环境温度对制热量影响更大;在-20℃环境冷启动工况下COP_h可达到3.15、制热量为3.6 k W;进风(Tg,a,in)和出风(Tg,a,out)温度分别为20℃和40℃时,COP_h最低为1.72。因此,与R134a相比,CO_2车用热泵系统的低温制热性能有显著的优势,该系统在电动汽车上具有较好的应用潜力。  相似文献   

6.
本文搭建了带水环路的R290电动汽车热泵空调实验台,研究了不同工况下系统的制冷性能和制热性能。实验结果表明:35℃常规制冷工况时,压缩机转速从1 800r/min增加6 600r/min,系统制冷量从1 789W提升至4 027W,而系统COP从3.65下降至1.82;45℃高温制冷工况时,压缩机转速从2 700 r/ min增加到4 500 r/min, 系统制冷量从1 973 W提升至3 031 W,而系统COP从2.10下降至1. 88;在-20 ℃/20 ℃低温制热工况.压缩机转速6 000 r/min时,系统制热量为2 911 W ,对应的系统COP为1.80;在-25 ℃/20 ℃低温制热工况、压缩机转3600r/min时,对应的系统制热量为1 658 W、系统COP为2.16。同时发现采用水环路的系统形式,提高了系统的安全可靠性,但与常规循环系统相比,系统性能存在-定程度的衰减,制冷量衰减300~500 W。制热量衰减200~400 W。  相似文献   

7.
本文将中间补气涡旋式压缩机应用于地暖制热系统,以解决地暖制热系统在低温环境下制热性能不佳、机组运行不稳定等问题,并建立补气地暖样机实验系统,研究了在不同运行工况下中间补气地暖系统的压缩机排气温度、制热量、功耗及制热COP等参数,分析了中间补气地暖系统制热性能与常规热泵制热性能之间的关系。实验结果表明:当环境温度处于-20~7℃之间时,带中间补气系统的地暖机组的制热量相比于普通热泵平均提升约26.2%,制热COP平均提升约为8.7%,功耗仅平均增加约16%;当室外环境温度为-20℃时,压缩机排气温度降低了12℃。可见采用中间补气技术的地暖系统在低能耗的条件下更能满足低环境温度的需求。  相似文献   

8.
张小艳  夏湘 《制冷学报》2018,39(6):24-31
本文以R417A为工质,在冷凝器不同进水温度、不同进水体积流量时,测试了空气源热泵热水器的运行性能及螺旋套管冷凝器的换热特性,为制冷空调及热泵系统的工质替代提供参考。实验工况为:冷凝器入口水温20~55℃,冷凝器进水体积流量为0.6~1.0 m~3/h,环境温度分别为15、29℃。结果表明:冷凝器进水体积流量一定时,随入口水温的升高,冷凝器总换热量、总传热系数减小,压缩机排气压力、输入功率增大,热泵热水器制热量、制热性能系数COP下降。冷凝器入口水温一定时,随进水体积流量的增加,冷凝器总换热量、总传热系数增大,压缩机排气压力、输入功率减小,热泵热水器制热量、COP增大。实验工况范围内,与环境温度为15℃相比,环境温度为29℃时的冷凝器总换热量、总传热系数、排气压力、吸气压力、输入功率、制热量、COP均较高。  相似文献   

9.
本文通过设置环境温度分别为-12℃、-6℃,初始水温为20℃,开启热泵进行加热,研究了不同供水温度对空气源热泵的制热量、系统功耗、能效、排气温度、压缩比等的影响。结果表明:在相同初始水温下,随着加热的进行,压缩机的制热量先增加后降低,供水温度为40℃时的制热量最大;当环境温度为-12℃,供水温度从25℃增至55℃时,系统功耗从11 905 W增至24 417 W,增加了105%,系统能效从4. 03降至2. 11,下降了47. 6%。  相似文献   

10.
冬季我国北方室外环境蕴含大量天然冷源,热力学分析表明热泵工质过冷释放的热量可以在蒸发器的等温吸热过程中获得补偿。为了研究大气自然冷源对热泵制热性能的影响,增设室外过冷器,搭建利用自然冷源过冷的空气源热泵实验装置。实验结果表明:当室外环境温度大于0 ℃,冷凝温度小于45 ℃的条件下,自然冷源过冷对热泵制热量与制热COP影响均较小,系统制热量维持在6.22 ~ 6.70 kW,制热COP维持在3.03,压缩机排气温度维持在103 ℃以下;当室外环境温度小于 -10 ℃,冷凝温度大于50 ℃时,随过冷度的增加,压缩机功率增加、排气温度显著增高,系统制热量呈先缓慢增加后减小趋势,制热COP降至2.3。基于上述研究提出一种空气源热泵过冷融霜新型除霜方式,融霜同时不停止制热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号