首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of N,S‐codoped nanotube‐like carbon (N,S‐NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α‐MnS nanoparticles (NPs) are in situ encapsulated into N,S‐NTC, preparing an advanced anode material (α‐MnS@N,S‐NTC) for lithium‐ion/sodium‐ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li‐storage properties, which is deduced by the studies of ex situ X‐ray diffraction/high‐resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α‐MnS@N,S‐NTC electrode delivers a high Li‐storage capacity (1415 mA h g?1 at 50 mA g?1), excellent rate capability (430 mA h g?1 at 10 A g?1), and long‐term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g?1) with retained morphology. In addition, the N,S‐NTC‐based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α‐MnS@N,S‐NTC also delivers high Na‐storage capacity (536 mA h g?1 at 50 mA g?1) without the occurrence of such α → β phase transition and excellent full‐cell performances as coupling with commercial LiFePO4 and LiNi0.6Co0.2Mn0.2O2 cathodes in LIBs as well as Na3V2(PO4)2O2F cathode in SIBs.  相似文献   

2.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

3.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

4.
Lithium–oxygen (Li–O2) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li‐ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li–O2 batteries. Herein, a new 3D hollow α‐MnO2 framework (3D α‐MnO2) with porous wall assembled by hierarchical α‐MnO2 nanowires is prepared by a template‐induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li–O2 batteries including the intrinsic high catalytic activity of α‐MnO2, more catalytic active sites of hierarchical α‐MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α‐MnO2 achieves a high specific capacity of 8583 mA h g?1 at a current density of 100 mA g?1, a superior rate capacity of 6311 mA h g?1 at 300 mA g?1, and a very good cycling stability of 170 cycles at a current density of 200 mA g?1 with a fixed capacity of 1000 mA h g?1. Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li–O2 batteries.  相似文献   

5.
Metal–organic frameworks (MOFs) are very promising self‐sacrificing templates for the large‐scale fabrication of new functional materials owing to their versatile functionalities and tunable porosities. Most conventional metal oxide electrodes derived from MOFs are limited by the low abundance of incorporated metal elements. This study reports a new strategy for the synthesis of multicomponent active metal oxides by the pyrolysis of polymetallic MOF precursors. A hollow N‐doped carbon‐coated ZnO/ZnCo2O4/CuCo2O4 nanohybrid is prepared by the thermal annealing of a polymetallic MOF with ammonium bicarbonate as a pore‐forming agent. This is the first report on the rational design and preparation of a hybrid composed of three active metal oxide components originating from MOF precursors. Interestingly, as a lithium‐ion battery anode, the developed electrode delivers a reversible capacity of 1742 mAh g?1 after 500 cycles at a current density of 0.3 mA g?1. Furthermore, the material shows large storage capacities (1009 and 667 mAh g?1), even at high current flow (3 and 10 A g?1). The remarkable high‐rate capability and outstanding long‐life cycling stability of the multidoped metal oxide benefits from the carbon‐coated integrated nanostructure with a hollow interior and the three active metal oxide components.  相似文献   

6.
Transition metal oxides have recently received great attention for application in advanced lithium‐ion batteries (LIBs) and oxygen evolution reaction (OER). Herein, the ethylenediaminetetraacetic cobalt complex as a precursor to synthesize ultrafine Co3O4 nanoparticles encapsulated into a nitrogen‐doped carbon matrix (NC) composites is presented. The as‐prepared Co3O4/NC‐350 obtained by pyrolysis at 350 °C demonstrates superior rate performance (372 mAh g?1 at 5.0 A g?1) and high cycling stability (92% capacity retention after 300 cycles at 1.0 A g?1) as anode for LIBs. When evaluated as an electrocatalyst for OER, the Co3O4/NC‐350 achieves an overpotential of 298 mV at a current density of 10 mA cm?2. The NC‐encapsualted porous hierarchical structure assures fast and continuous electron transportation, high activity sites, and strong structural integrity. This works offers novel complex precursors for synthesizing transition metal–based electrodes for boosting electrochemical energy conversion and storage.  相似文献   

7.
LiV3O8 nanorods with controlled size are successfully synthesized using a nonionic triblock surfactant Pluronic‐F127 as the structure directing agent. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques are used to characterize the samples. It is observed that the nanorods with a length of 4–8 µm and diameter of 0.5–1.0 µm distribute uniformly. The resultant LiV3O8 nanorods show much better performance as cathode materials in lithium‐ion batteries than normal LiV3O8 nanoparticles, which is associated with the their unique micro–nano‐like structure that can not only facilitate fast lithium ion transport, but also withstand erosion from electrolytes. The high discharge capacity (292.0 mAh g?1 at 100 mA g?1), high rate capability (138.4 mAh g?1 at 6.4 A g?1), and long lifespan (capacity retention of 80.5% after 500 cycles) suggest the potential use of LiV3O8 nanorods as alternative cathode materials for high‐power and long‐life lithium ion batteries. In particular, the synthetic strategy may open new routes toward the facile fabrication of nanostructured vanadium‐based compounds for energy storage applications.  相似文献   

8.
Redox‐active catechols are bioinspired precursors for ortho ‐quinones that are characterized by higher discharge potentials than para ‐quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol‐ and Li+ ion‐conducting anionic pendants endow redox‐active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder‐, and metal current collector‐free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure‐optimized RAPs can store high‐capacities of 360 mA h g?1 at 5C and 320 mA h g?1 at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g?1 (24% capacity retention) at an extreme C‐rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active‐material utilization, ultralong cyclability, and excellent rate performances of RAPs‐based electrode clearly rival most of the state‐of‐the‐art Li+ ion organic cathodes, and opens up new horizons for large‐scalable fabrication of electrode materials for ultrarobust Li storage.  相似文献   

9.
Metal–organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self‐sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost‐efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal–organic frameworks of Ni‐Co‐BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3? x O4 multishelled hollow microspheres through a morphology‐inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer‐sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium‐ion batteries, Ni x Co3? x O4‐0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with an excellent high‐rate capability. Appropriate capacities of 832 and 673 mAh g?1 could also be retained after 300 cycles at large currents of 1 and 2 A g?1, respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs‐derived mixed metal oxides with multishelled hollow structures for progressive lithium‐ion batteries.  相似文献   

10.
In this work, a facile salt‐templated approach is developed for the preparation of hollow FeSe2/graphitic carbon composite microspheres as sodium‐ion battery anodes; these are composed of interconnected multicavities and an enclosed surface in‐plane embedded with uniform hollow FeSe2 nanoparticles. As the precursor, Fe2O3/carbon microspheres containing NaCl nanocrystals are obtained using one‐pot ultrasonic spray pyrolysis in which inexpensive NaCl and dextrin are used as a porogen and carbon source, respectively, enabling mass production of the composites. During post‐treatment, Fe2O3 nanoparticles in the composites transform into hollow FeSe2 nanospheres via the Kirkendall effect. These rational structures provide numerous conductive channels to facilitate ion/electron transport and enhance the capacitive contribution. Moreover, the synergistic effect between the hollow cavities within FeSe2 and the outstanding mechanical strength of the porous carbon matrix can effectively accommodate the large volume changes during cycling. Correspondingly, the composite microsphere exhibits high discharge capacity of 510 mA h g?1 after 200 cycles at 0.2 A g?1 with capacity retention of 88% when calculated from the second cycle. Even at a high current density of 5.0 A g?1, a high discharge capacity of 417 mA h g?1 can be achieved.  相似文献   

11.

Nanostructured transition metal oxides are promising anode materials for lithium-ion batteries. Nevertheless, the problem of high volume expansion rate limits its further application. In this paper, we present a 3D hierarchical SnO2 hollow nanotubes material by calcining C@SnS2 materials in the air. This structure combines the advantages of both the hollow nanotubes and the outer staggered nanosheets structure, in which the hollow nanotube can provide more lithium ion transport channels, the space between the tubes can buffer the volume change, and the staggering nanosheets structure can effectively improve the relative specific surface area of the material and improve the storage capacity. As a result, the SnO2 hollow nanotubes anode exhibits the highly reversible capacity of 1079 mAh g?1 at a current density of 100 mA g?1, while the reversible specific capacity of 770 mAh g?1 was obtained after 100 cycles. The research results obtained in this work provide a feasible strategy for synthetic nanoscale transition metal oxide as high-performance lithium anode material.

  相似文献   

12.
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface‐to‐volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium‐ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF‐67 polyhedrons into 3D hollow frameworks via electrostatic self‐assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g?1 at 0.1 A g?1, an impressive rate behavior with 435.8 mAh g?1 retained at 5 A g?1, and good stability over 1200 cycles (545 mAh g?1 at 2 A g?1).  相似文献   

13.
A novel anode material for lithium‐ion batteries derived from aromatic imides with multicarbonyl group conjugated with aromatic core structure is reported, benzophenolne‐3,3′,4,4′‐tetracarboxylimide oligomer (BTO). It could deliver a reversible capacity of 829 mA h g?1 at 42 mA g?1 for 50 cycles with a stable discharge plateaus ranging from 0.05–0.19 V versus Li+/Li. At higher rates of 420 and 840 mA g?1, it can still exhibit excellent cycling stability with a capacity retention of 88% and 72% after 1000 cycles, delivering capacity of 559 and 224 mA h g?1. In addition, a rational prediction of the maximum amount of lithium intercalation is proposed and explored its possible lithium storage mechanism.  相似文献   

14.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

15.
With the unique‐layered structure, MXenes show potential as electrodes in energy‐storage devices including lithium‐ion (Li+) capacitors and batteries. However, the low Li+‐storage capacity hinders the application of MXenes in place of commercial carbon materials. Here, the vanadium carbide (V2C) MXene with engineered interlayer spacing for desirable storage capacity is demonstrated. The interlayer distance of pristine V2C MXene is controllably tuned to 0.735 nm resulting in improved Li‐ion capacity of 686.7 mA h g?1 at 0.1 A g?1, the best MXene‐based Li+‐storage capacity reported so far. Further, cobalt ions are stably intercalated into the interlayer of V2C MXene to form a new interlayer‐expanded structure via strong V–O–Co bonding. The intercalated V2C MXene electrodes not only exhibit superior capacity up to 1117.3 mA h g?1 at 0.1 A g?1, but also deliver a significantly ultralong cycling stability over 15 000 cycles. These results clearly suggest that MXene materials with an engineered interlayer distance will be a rational route for realizing them as superstable and high‐performance Li+ capacitor electrodes.  相似文献   

16.
Rational synthesis of flexible electrodes is crucial to rapid growth of functional materials for energy‐storage systems. Herein, a controllable fabrication is reported for the self‐supported structure of CuCo2O4 nanodots (≈3 nm) delicately inserted into N‐doped carbon nanofibers (named as 3‐CCO@C); this composite is first used as binder‐free anode for sodium‐ion batteries (SIBs). Benefiting from the synergetic effect of ultrasmall CuCo2O4 nanoparticles and a tailored N‐doped carbon matrix, the 3‐CCO@C composite exhibits high cycling stability (capacity of 314 mA h g?1 at 1000 mA g?1 after 1000 cycles) and high rate capability (296 mA h g?1, even at 5000 mA g?1). Significantly, the Na storage mechanism is systematically explored, demonstrating that the irreversible reaction of CuCo2O4, which decomposes to Cu and Co, happens in the first discharge process, and then a reversible reaction between metallic Cu/Co and CuO/Co3O4 occurrs during the following cycles. This result is conducive to a mechanistic study of highly promising bimetallic‐oxide anodes for rechargeable SIBs.  相似文献   

17.
Large‐volume‐expansion‐induced material pulverization severely limits the electrochemical performance of red phosphorous (P) for energy‐storage applications. Hollow nanospheres with porous shells are recognized as an ideal structure to resolve these issues. However, a chemical synthetic approach for preparing nanostructured red P is always of great challenge and hollow nanosphere structures of red P have not yet been fabricated. Herein, a wet solvothermal method to successfully fabricate hollow P nanospheres (HPNs) with porous shells via a gas‐bubble‐directed formation mechanism is developed. More importantly, due to the merits of the porous and hollow structures, these HPNs reveal the highest capacities (based on the weight of electrode materials) of 1285.7 mA h g?1 for lithium‐ion batteries and 1364.7 mA h g?1 for sodium‐ion batteries at 0.2 C, and excellent long‐cycling performance.  相似文献   

18.
Metal phosphides are a new class of potential high‐capacity anodes for lithium ion batteries, but their short cycle life is the critical problem to hinder its practical application. A unique ball‐cactus‐like microsphere of carbon coated NiP2/Ni3Sn4 with deep‐rooted carbon nanotubes (Ni‐Sn‐P@C‐CNT) is demonstrated in this work to solve this problem. Bimetal‐organic‐frameworks (BMOFs, Ni‐Sn‐BTC, BTC refers to 1,3,5‐benzenetricarboxylic acid) are formed by a two‐step uniform microwave‐assisted irradiation approach and used as the precursor to grow Ni‐Sn@C‐CNT, Ni‐Sn‐P@C‐CNT, yolk–shell Ni‐Sn@C, and Ni‐Sn‐P@C. The uniform carbon overlayer is formed by the decomposition of organic ligands from MOFs and small CNTs are deeply rooted in Ni‐Sn‐P@C microsphere due to the in situ catalysis effect of Ni‐Sn. Among these potential anode materials, the Ni‐Sn‐P@C‐CNT is found to be a promising anode with best electrochemical properties. It exhibits a large reversible capacity of 704 mA h g?1 after 200 cycles at 100 mA g?1 and excellent high‐rate cycling performance (a stable capacity of 504 mA h g?1 retained after 800 cycles at 1 A g?1). These good electrochemical properties are mainly ascribed to the unique 3D mesoporous structure design along with dual active components showing synergistic electrochemical activity within different voltage windows.  相似文献   

19.
Storing more energy in a limited device area is very challenging but crucial for the applications of flexible and wearable electronics. Metal vanadates have been regarded as a fascinating group of materials in many areas, especially in lithium‐ion storage. However, there has not been a versatile strategy to synthesize flexible metal vanadate hybrid nanostructures as binder‐free anodes for Li‐ion batteries so far. A convenient and versatile synthesis of MxVyOx+2.5y@carbon cloth (M = Mn, Co, Ni, Cu) composites is proposed here based on a two‐step hydrothermal route. As‐synthesized products demonstrate hierarchical proliferous structure, ranging from nanoparticles (0D), and nanobelts (1D) to a 3D interconnected network. The metal vanadate/carbon hybrid nanostructures exhibit excellent lithium storage capability, with a high areal specific capacity up to 5.9 mAh cm?2 (which equals to 1676.8 mAh g?1) at a current density of 200 mA g?1. Moreover, the nature of good flexibility, mixed valence states, and ultrahigh mass loading density (over 3.5 mg cm?2) all guarantee their great potential in compact energy storage for future wearable devices and other related applications.  相似文献   

20.
Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP?GCC) are facilely synthesized by a top‐down route applying room‐temperature synthesized Co‐based zeolitic imidazolate framework (ZIF‐67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages‐encapsulated Co9S8, the as‐obtained HCSP?GCC exhibit superior Li‐ion storage. Working in the voltage of 1.0?3.0 V, they display a very high energy density (707 Wh kg?1), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g?1 at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g?1). When the work voltage is extended into 0.01–3.0 V, a higher stable capacity of 1600 mA h g?1 at a current density of 100 mA g?1 is still achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号