首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
翟进  马如钝 《生理学报》1991,43(1):73-77
应用细胞内记录技术观察了钙通道阻滞剂硝苯吡啶(nifedlpine)对离体豚鼠腹腔神经节细胞三种钙依赖性电位的可逆性作用。硝苯吡啶(0.1—1mmol/L)可剂量依赖式地抑制动作电位后超极化、强直后膜电位的变化,在无钠高钙加 TEA 溶液中,硝苯吡啶(0.1μmol/L)能抑制钙锋电位。结果表明,大剂量的硝苯吡啶可继发性抑制钙依赖性钾电导,临床治疗剂量的硝苯吡啶还直接减少钙电导。以上作用是硝苯吡啶调节交感节后神经元的兴奋性,阻滞突触前膜 ACh 的量子性释放的基础。  相似文献   

2.
硝苯吡啶是一种钙通道阻断剂,具有降血压作用。一般认为,硝苯吡啶的降压作用,是由于阻滞血管平滑肌的Ca~(2 )跨膜内流而使血管扩张以及促进肾脏排钠利尿所致。但是硝苯吡啶也能影响包括激素分泌在内的多种钙依赖性生理过程。因此,探讨硝苯吡啶的降压作用与血浆中加压激素和降压激素含量变  相似文献   

3.
糖皮质激素引起哺乳类神经元超极化反应的离子机制   总被引:1,自引:0,他引:1  
汪文  邢宝仁  陈宜张 《生理学报》1997,49(5):537-544
在豚鼠腹腔神经节上对383个神经元作细胞内记录,给予1μmol/L半琥珀酸皮质醇灌流,38个神经元膜电位发生超极化反应,幅度变化为2~12mV(6.3±0.1mV),伴有膜电阻的降低,反应呈剂量效应关系。9个神经元呈去极化反应,其余336个神经元不反应。用单电极间断电压箝方法记录43个神经元在糖皮质激素作用下膜电流的变化,其中5个神经元出现外向电流,膜电导增加;1个神经元为内向电流。用低钙高镁液阻断突触传递和蛋白质合成抑制剂放线菌素D后,超极化反应仍然存在。皮质醇超极化反应的翻转电位为-79.0±4.3mV(n=5)。皮质醇超极化反应和GABA去极化反应可在同一神经元上出现,印防己毒素可拮抗GABA的去极化反应,但不能拮抗皮质醇的超极化反应。钾离子通道阻断剂四乙基铵(TEA)和4-氨基吡啶(4-AP)能拮抗皮质醇的超极化反应。我们推断皮质醇的超极化反应是细胞膜钾离子通道介导的。  相似文献   

4.
在培养的大鼠垂体前叶细胞悬液内加入内皮素100 nmol/L,可诱发胞浆钙浓度升高,即刻出现一高峰波,随后为低平台波,此双相波约维持1.5 min。高峰波在10 s内出现,若消除细胞外Ca~(2+),不影响高峰波的产生,说明峰波与细胞内储存的Ca~(2+)有关。若加双氢吡啶钙通道拮抗剂硝苯啶(nifedipine)1 μmol/L,  相似文献   

5.
用细胞内微电极记录方法在大鼠离体脑片中研究了神经降压素(NT)对迷走运动背核(DMV)神经元的作用机制。滴注或灌流NT使88%DMV神经元产生剂量依赖性去极化反应,并伴有膜阻抗的增加。去极化反应的翻转电位约-82mV,反应幅度受灌流液中钾离子浓度的影响。用高镁无钙液或含河豚毒素的灌流液阻断突触传递后,去极化反应仍然存在。研究结果提示NT通过突触后机制直接兴奋DMV神经元,此去极化兴奋作用可能与钾通道的关闭有关。  相似文献   

6.
辣椒素对离体大鼠胃平滑肌收缩性的影响   总被引:1,自引:0,他引:1  
目的:考察辣椒素对离体大鼠胃平滑肌收缩性的影响。方法:本研究以大鼠的离体胃平滑肌条为模型,首先考察在正常钙克氏液、高钙克氏液和低钙克氏液中辣椒素对胃平滑肌收缩作用的影响。然后正常克氏液中,分别观察辣椒素对乙酰胆碱、新斯的明、阿托品分别存在下的胃平滑肌收缩性的影响。结果:辣椒素在2.5μmol/L-40μmol/L浓度范围内可剂量依赖性显著抑制高钙溶液(Ca2 终浓度5μmol/L)引起的大鼠胃平滑肌强烈收缩,在5μmol/L-40μmol/L浓度范围内可显著抑制正常克氏液中大鼠胃平滑肌条的运动,且具有明显剂量依赖性,在10μmol/L-40μmol/L浓度范围内可显著抑制低钙克氏液中大鼠胃平滑肌条的运动,且具有剂量依赖性。辣椒素(10μmol/L)可拮抗乙酰胆碱和新斯的明引起的收缩作用(P<0.01)。辣椒素(10μmol/L)的作用与阿托品具有相加作用(P<0.01)。结论:辣椒素对胃平滑肌的收缩具有明显的抑制作用。  相似文献   

7.
Fan P  Li L  Liu ZJ  Si JQ  Zhang ZQ  Zhao L  Ma KT 《生理学报》2007,59(3):331-338
本文旨在探讨大鼠新鲜离体输精管平滑肌细胞中乙酰胆碱(acetylcholine,ACh)引起超极化反应的机制,采用细胞内微电极记录技术和细胞内荧光标记技术研究ACh对大鼠输精管不同走行方向平滑肌细胞的作用。用尖端含0.1%碘化吡啶(propidium iodide,PI)的记录电极标记电生理记录后的平滑肌细胞,其中37个为外层纵行细胞,17个为内层环行细胞。它们的平均静息膜电位分别为(-53.56±3.88)mV和(-51.62±4.27)mV,膜输入阻抗分别为(2245.60±372.50)MQ和(2101.50±513.50)MQ。ACh引起的膜超极化反应是浓度依赖性的,EC50为36 μmol/L。ACh引起的超极化反应可被非选择性的毒草碱(muscarinic receptor,M)受体阻断剂阿托品(atropine,1 μmol/L)和选择性的M3受体阻断剂diphenylacetoxy-N-methylpiperidine-methiodide(DAMP,100nmol/L)阻断。ACh引起的超极化还能被一氧化氮合酶抑制剂L-硝基-精氨酸甲酯(N-nitro-L-arginine methylester,L.NAME,300μmol/L)阻断,并可被ATP敏感的钾通道阻断剂glipizide(5μmol/L)或内向整流钾通道阻断剂钡离子(50μmol/L)部分阻断。Glipizide和钡离子联合使用可完全阻断ACh引起的超极化反应。上述结果表明:ACh通过作用于大鼠输精管平滑肌细胞膜上的M3受体引起超极化反应,一氧化氮、ATP敏感性钾通道和内向整流钾通道参与了ACh引起的超极化反应。  相似文献   

8.
Shi LJ  Wang CA 《生理学报》2002,54(5):441-445
新霉素是一种氨基甙类抗生素,在细胞水平可以抑制磷脂酶C介质的信号转导系统,本研究采用全细胞膜片钳技术,以大鼠肾上腺嗜铬细胞瘤细胞(PC12)为标本,观察了新霉素参考书国酰胆碱诱发电流(IACh)的影响,药理学鉴定表明,PC12细胞上的IACh是通过ACh激动烟碱受体引起的,钳制电压为-80mV时,ACh(30umol/L)诱发一内向电流;细胞外同时给予新霉素(0.01-1mmol/L)和ACh(30μmol/L)可显著抑制IACh峰值,此抑制作用迅速,可逆,呈浓度依赖性,用新霉素预处理细胞3-8min不影响其对IACh的抑制作用,用外源性蛋白激酶C(PKC)激剂激活PKC,同样可抑制IACh,而细胞内透析PKC抑制剂(PKCI19-31,0.1-5μmol/L)不影响新霉素对IACh的抑制作用,以上结果提示,新霉对PC12细胞的IACh的有抑制作用,这是一种与磷脂酶C阻断无关的药理学效应。  相似文献   

9.
钙/钙调蛋白依赖性丝氨酸蛋白激酶的结构和功能   总被引:2,自引:0,他引:2       下载免费PDF全文
钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase, CASK)属于膜相关鸟苷酸激酶(membrane associated guanylate kinase, MAGUK)家族.CASK具有多个不同蛋白质结合结构域,在细胞膜的特定区域,与其他蛋白质形成多种蛋白质复合体,参与组成细胞骨架.它通过衔接细胞外信号蛋白和细胞内骨架蛋白,协助功能蛋白质的转运和定位,以及细胞内的信号传递.此外CASK还可以进入细胞核影响基因转录调控,以及作用在神经突触膜上参与神经递质的释放.  相似文献   

10.
目的 :观察蛋白激酶C(PKC)对大鼠离体肺动脉环张力及反应性的调节作用。方法 :取Wistar大鼠肺动脉 ,观察在离体情况下PKC激活剂PMA及PKC抑制剂RO3 182 2 0对肺动脉环张力的直接作用 ;对氯化钾 (KCl)、5 羟色胺 (5 HT)和缺氧引起的收缩反应的影响 ;以及PMA对乙酰胆碱 (ACh)介导的内皮依赖性舒张 (EDR)和硝普钠(SNP)介导的内皮非依赖性舒张 (EIDR)反应的影响。结果 :①PMA(5 0 0nmol/L)使肺动脉环产生缓慢增强、持久的收缩 ,随PMA浓度增加而增强 ,RO3 182 2 0 (5 μmol/L)可完全阻断PMA的上述作用 ;②PMA可增强肺动脉对KCl、5 HT的收缩反应 ,该作用随PMA浓度增加而增强 ;③RO3 182 2 0 (5 μmol/L)几乎可以完全阻断离体肺动脉环对缺氧的第二相收缩反应 ;④PMA(10nmol/L)在 10min内完全逆转ACh(10 μmol/L)介导的EDR ,PMA(10nmol/L)还可使ACh的浓度一反应显著减弱 ,达到最大舒张反应的一半时对应的ACh浓度 (EC50 )显著增加 ,最大舒张反应明显减小 ;而PMA对SNP介导的EIDR无显著影响。结论 :PKC在与肺动脉张力及反应性的调节有关的细胞内生物信号传递过程中具有重要作用。  相似文献   

11.
The possible function of sialic acid containing substrates in the synaptic terminals was studied by intracellular injection of ruthenium red (RuR) and neuraminidase (NAA). When injected into cholinergic and non cholinergic neurons of Aplysia, NAA and RuR, known to have similar molecular targets, blocked synaptic transmission. The subcellular sites of action of these molecules were investigated. 1. ACh receptors are not affected by RuR. 2. An intracellular site of action of RuR is likely, as less was necessary to block transmission when injected into the presynaptic cell than when applied in the bath. 3. Ca++ channels are not blocked by RuR or neuraminidase. 4. Transmission block is not due to an axonal conduction block, since strong somatic depolarization is not able to induce transmitter release in the presence of RuR. 5. Biochemical analysis of pools of 3H ACh was performed in controls and after injection of RuR. RuR appeared to significantly increase the cytoplasmic ACh pool without any change of the vesicular ACh pool. 6. Quantal release of transmitter was analysed with a current fluctuation method. There were no changes in the amplitude or decay time (tau) of miniataure postsynaptic potentials, but a decrease in the quantal content of the synapse was found.  相似文献   

12.
Transmitter release was studied with respect to the presynaptic acetylcholine (ACh) content at a central identified inhibitory synapse (Cl- conductance) of Aplysia californica. Statistical analysis of the synaptic noise evoked by sustained depolarization of the presynaptic neuron allowed us to calculate the quantal parameters of the postsynaptic responses. Loading of the presynaptic neurone with injected ACh led to an increase in the postsynaptic responses whereas the calculated miniature postsynaptic current (MPSC) was unmodified. Destruction of choline by choline oxidase either applied extracellularly and coupled to intense stimulations of the presynaptic cell or injected into the presynaptic neuron induced a depression of the postsynaptic response although the amplitude of the calculated MPSC remained constant. As the size of the MPSC, i.e. the size of the quantum, did not change in these experiments, it was concluded that the presynaptic ACh content controls the number of quanta released by a given presynaptic depolarization. As additional evidence, effects of abrupt increase in tonicity of the external medium were studied. The observed transient enhancement of the quantal content of the postsynaptic response could be attributed to an increase in the presynaptic concentration of ACh, resulting from the reduction in cellular volume.  相似文献   

13.
1. In the present paper we review some presynaptic aspects of the mode of action of botulinal toxins (BoTxs) at vertebrate neuromuscular junctions with emphasis on studies carried out in our laboratories using electrophysiological and morphological techniques. 2. Spontaneous quantal transmitter release recorded as miniature end-plate potentials is drastically affected by BoTxs. The low probability of release at poisoned terminals can be enhanced by carbonyl cyanide m-chlorophenylhydrazone (CCCP), Cd2+ and La3+. However, CCCP and La3+ which drastically deplete clear synaptic vesicles from unpoisoned terminals failed to markedly affect the density of synaptic vesicles at poisoned terminals. It is concluded that poisoned terminals have a reduced sensitivity to the release-promoting action of Ca2+, Cd2+ and La3+. 3. When comparing the effect of the various BoTxs on nerve-impulse evoked transmitter release it appears that increasing phasic Ca2+ entry into the terminals enhances evoked synchronized quantal release only from terminals poisoned with serotypes A and E. In contrast, enhanced Ca2+ entry into terminals poisoned with serotypes B, D and F induced a period of high frequency asynchronous release suggesting that these BoTxs may affect a presynaptic step beyond the influx of Ca2+, that may be involved in the synchronization of transmitter quanta. These data suggest that the actions of BoTxs involve several steps of the acetylcholine release process. 4. The analysis of presynaptic currents which depend on both Ca2+ entry and intraterminal background Ca2+ levels strongly suggests that neither Ca2+ entry nor intraterminal Ca2+ levels are altered by BoTxs. Furthermore, poisoned terminals are no more efficient than unpoisoned ones in dealing with Ca2+ overloads. 5. Finally, the morphological examination of junctions paralysed by BoTx-A indicates that the toxin triggers a particularly important overgrowth of the nerve terminals and suggests that the in vivo functional recovery may occur from an extension of the original nerve terminal arborization and the concomitant remodelling of postsynaptic structures.  相似文献   

14.
The physiological and pharmacological properties of contraction and the ultrastructure of buccal mass retractor muscle (I4) and gill-pinnule closure muscle (GPCM) in Aplysia kurodai were studied to learn more about the sources of activator Ca2+ in molluscan smooth muscle. Acetylcholine (ACh) and high K+-induced contractions were reduced by lowering the external Ca2+ concentration, and eliminated by the removal of extracellular Ca2+. Nifedipine appreciably reduced ACh- and high K+-induced contractions, while amiloride decreased only ACh-induced contractions and had no significant effect on high K+-induced contractions. When nifedipine and amiloride were applied together, either type of contraction was still appreciable. Serotonin (5-HT) could potentiate subsequent ACh- and high K+-induced contractions in I4; potentiated tension was significantly reduced by nifedipine and amiloride, whereas 5-HT inhibited ACh-and high K+-induced contractions in GPCM. The potentiating effects of 5-HT may be mediated by the activation of the Ca2+-channel to increase the influx from extracellular Ca2+. Caffeine caused contractions in Ca2+-free solution in both muscles. Electron microscopy revealed sarcolemmal vesicles underneath the plasma membrane in both muscle fibers. Electron microscopical cytochemistry demonstrated that pyroantimonate precipitates were localized in the sarcolemmal vesicles and in the inner surface of plasma membranes in the resting fibers. Present results indicate that the contractions of I4 and GPCM fibers are caused not only by Ca2+-influx but also by Ca2+ release from the intracellular storage sites, such as the sarcolemmal vesicles and the inner surface of plasma membranes.  相似文献   

15.
The properties of synaptic transmission were first elucidated at the neuromuscular junction. More recent work has examined transmission at synapses within the brain. Here we review the remarkable progress in understanding the biophysical and molecular basis of the sequential steps in this process. These steps include the elevation of Ca2+ in microdomains of the presynaptic terminal, the diffusion of transmitter through the fusion pore into the synaptic cleft and the activation of postsynaptic receptors. The results give insight into the factors that control the precision of quantal transmission and provide a framework for understanding synaptic plasticity.  相似文献   

16.
1. Recent concept of postsynaptic modulation is reviewed on the basis of literature data and the results of our investigation using conventional intracellular and voltage-clamp recording methods, in vitro. 2. Experimental evidence provided that the sensitivity of nicotinic ACh receptors endowed on the postsynaptic membrane of the bullfrog sympathetic ganglia and of the frog skeletal muscle end-plate is either facilitated or inhibited by other neurotransmitters or neurohormones. 3. We propose that one neurotransmitter not only initiates its own postsynaptic potential but also regulates the efficacy of synaptic transmission mediated by a distinct neurotransmitter, as an endogenous "antagonist" or "sensitizer".  相似文献   

17.
Effect of nifedipine on inhibitory postsynaptic currents (IPSC) was studied in cultured hippocampal neurons. Nifedipine, if used in low concentrations, caused no essential changes in the IPSC amplitude. If used in high concentrations (50 or 100 μM), this calcium channel blocker reduced the IPSC amplitude, on the average, by 35 and 42%, respectively. The calcium current component sensitive to nifedipine at high concentrations was found to be insensitive to the agents, which block calcium channels of N- and P/Q types. It is concluded that the L-type calcium channels sensitive to nifedipine in low concentrations are absent in the presynaptic membrane of inhibitory synapses, whereas the only component of calcium current sensitive to this blocking agent in a high concentration, as well as the ω-CTx-GVIA- and ω-Aga-IVA-sensitive components of this current, participate in the transmission of inhibitory synaptic influences on the neurons studied.  相似文献   

18.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

19.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号