首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
通过筛选获得1株Shewanella baltica,分别改变阳极基质种类、浓度、pH和温度,考察不同条件下接种该菌后MFC产电特性.乳酸钠作为基质时接种该菌的MFC产电功率密度最大,MFC产电功率密度和基质浓度满足Monod模型.阳极溶液pH和温度对接种该菌的MFC产电功率密度影响最大.阳极溶液pH为8时接种该菌的MFC产电功率密度最大可达1236mW/m2,最大功率密度上升主要是阳极内阻和阳极电势影响所致.接种该菌的MFC最大产电功率密度在50℃达到1197mW/m2,最大功率密度随温度变化的主要原因是温度对阳极内阻的影响,20~50℃时MFC电流密度与温度满足Arrhenius方程.  相似文献   

2.
以玉米秸秆稀酸水解液为阳极底物,用鱼塘底泥源菌种、乳酸菌、盐碱土源菌种为产电微生物构建双室微生物燃料电池(MFCs),研究这3种不同菌源微生物的产电性能及机理。实验条件下测得以鱼塘底泥源菌种、乳酸菌、盐碱土源菌种的MFCs的最大产电量分别为435、400、316 m V;最大功率密度分别为60.5、53.9、43.3 m W/m~2。这3种产电微生物的COD的去除率分别为86.27%、89.32%、82.31%。循环伏安曲线表明鱼塘底泥源菌种具有较高的阳极生物膜活性。3种产电微生物的扩散为半无限扩散特征的Warburg阻抗,由电极外电解质溶液中的氧扩散引起。  相似文献   

3.
范明志  梁鹏  曹效鑫  黄霞 《环境科学》2008,29(1):263-267
在微生物燃料电池中,阳极电势会对产电菌的富集和生长产生影响.为进一步明确阳极电势的作用,确定适合微生物生长的最佳阳极电势,在微生物燃料电池的阳极室中设置附加电路以改变阳极的初始电势,考察阳极初始电势对产电微生物的影响.将阳极初始电势设为350 mV时,产电微生物的生长明显变慢.而阳极初始电势为-200 mV和200 mV时,微生物的生长速度基本相同.稳定运行后,阳极初始电势分别为350、200和-200 mV的微生物燃料电池,阳极内阻分别为71、43和80 Ω.通过变性梯度凝胶电泳(DGGE)分析微生物燃料电池稳定产电前后阳极微生物群落结构,虽然3个微生物燃料电池的阳极初始电势不同,但稳定后微生物群落结构相似,Clostridium sticklandii、Pseudomonas mendocina、Paenibacillus taejonensis在阳极的富集量最多,MFC对这3种细菌的强化富集作用最明显.  相似文献   

4.
缓冲液对微生物燃料电池产电性能影响研究   总被引:2,自引:0,他引:2  
强琳  袁林江  丁擎 《环境科学》2011,32(5):1524-1528
微生物燃料电池(microbial fuel cell,MFC)应用于废水处理是一项非常有潜力的除污产能的绿色技术.但MFC运行过程中采用磷酸盐缓冲液不符合除污产能要求,增加水体富营养化趋势且增加水处理成本.试验采用单极室微生物燃料电池处理模拟生活污水,以投加PBS(phosphate buffer solution)...  相似文献   

5.
利用玉米浸泡液产电的微生物燃料电池研究   总被引:5,自引:3,他引:5  
以玉米淀粉生产过程中的浸泡液(玉米浸泡液)作为接种液和基质,利用“三合一”膜电极的单室空气阴极微生物燃料电池进行试验,采用在线监测电压和废水分析方法对产电功率和化学需氧量(COD)、氨氮进行测定,探讨高COD、高氨氮有机废水产电及废水处理的可行性.结果表明,经过94 d(1个周期)的连续运行(固定外电阻为1 000 Ω),17 d时输出电压达到最大(525.0 mV),稳定期最大输出功率可达169.6 mW/m2,此时电池相应的电流密度为440.2 mA/m2,内阻约为350 Ω,开路电压619.5 mV;但燃料电池电子利用效率较低(库仑效率为1.6%);1个周期结束时浸泡液的COD去除率达到51.6%,氨氮去除率25.8%.本试验利用玉米浸泡液成功获得电能,同时对浸泡液有效地进行了处理,为其资源化利用提供新途径.  相似文献   

6.
为探讨KMnO4用作阴极电子受体对牛粪长期发酵产电性能的影响,构建了以牛粪为主要底物的双室微生物燃料电池(Microbial fuel cell,MFC),考察了50,200,800mg/L KMnO4时牛粪MFC开路电势、输出电压、功率密度、有机底物变化及降解情况.结果表明:当KMnO4为800mg/L(MFC-800)时产生的开路电势和输出电压最高,分别达到1148mV和234mV,最大功率密度达177mW/m3,库伦效率和净产能最大,分别为18%和19.5MJ/t;电池运行203d后,MFC-800的COD去除率最高,达68.1%;在电池运行过程中,MFC-800的VFA浓度增加了3.5倍,达388mmol/L;pH值从7.25下降到5.71下降了1.54;产电结束后,阳极发酵固态剩余物的成分符合《有机肥料》(NY525-2012)标准,可用于有机肥料生产.  相似文献   

7.
微生物燃料电池利用甘薯燃料乙醇废水产电的研究   总被引:1,自引:2,他引:1  
蔡小波  杨毅  孙彦平  张良  肖瑶  赵海 《环境科学》2010,31(10):2512-2517
利用空气阴极微生物燃料电池(MFC)处理甘薯燃料乙醇废水,以COD为5000mg/L的废水做底物,获得的最大电功率密度为334.1mW/m2,库仑效率(CE)为10.1%,COD去除率为92.2%.实验进一步考察了磷酸缓冲液(PBS)浓度和废水浓度对MFC产电性能的影响.PBS含量从50mmol/L增加到200mmol/L,MFC输出的最大电功率密度提高了33.4%,CE增加26.0%,但PBS对废水的COD去除率影响不大.含50mmol/LPBS的废水COD从625mg/L增加到10000mg/L,COD去除率和MFC输出的最大电功率密度在废水浓度为5000mg/L处均获得最大值,但CE值有降低的趋势,从28.9%变化至10.3%.这些结果表明,MFC可以在处理甘薯燃料乙醇废水的同时获得电能;增大PBS浓度能提高MFC的产电性能;MFC输出的最大电功率密度随废水COD增加而增大,但废水浓度过高会引起酸化使MFC产电性能下降.  相似文献   

8.
利用双室微生物燃料电池处理模拟废水的产电特性研究   总被引:1,自引:1,他引:1  
本实验通过研究电池的启动过程、阳极有机物降解率和阴极Cu2+的去除率,评价了微生物燃料电池(microbial fuel cell,MFC)的产电和处理废水性能.以模拟糖蜜废水作为阳极基质,模拟电镀废水作阴极电子受体,建立简单的双室微生物燃料电池.结果表明在外电阻为800Ω的情况下,电池得到最大电压417.00 mV,从极化曲线上获得最大输出功率密度44.17mW.m-2,内阻为293Ω.电池在第五周期时,COD去除率也达到最高47.31%.在第四周期内,Cu2+最大的去除率为59.76%.综上所述,MFC在处理有机废水和电镀废水方面具有可行性.  相似文献   

9.
刘慎坦  王祚 《环境工程》2023,(12):116-122+149
生态型微生物燃料电池(ecotype-microbial fuel cell, E-MFC)是1种将微生物燃料电池(microbial fuel cell, MFC)与水生动植物结合在一起的新型废水处理技术。为研究E-MFC中微生物、水生植物和底栖动物之间的共生协同作用,设置了沉积物MFC(sediment-microbial fuel cell, S-MFC)、湿地植物MFC(wetland plant-microbial fuel cell, WP-MFC,种植水生植物)和生态型MFC(E-MFC,引入水生植物和底栖动物)3种反应装置,分别测试了其产电能力和脱氮效果,考察了水力停留时间(HRT)和阴极曝气流量对E-MFC脱氮产电效能的影响,并探讨了脱氮机理。结果表明:E-MFC脱氮产电性能均优于其他2种。在处理相同量的有机废水时,E-MFC的最大产电功率密度比S-MFC和WP-MFC分别高129.4%和47.2%,NH+4-N去除率分别高37.6百分点和11.2百分点,E-MFC的NO-3-N去...  相似文献   

10.
丁为俊  于立亮  陈杰  成少安 《环境科学》2017,38(5):1911-1917
阳极材料是影响微生物燃料电池实用化的关键因素之一.本文以碳刷、碳布或石墨毡阳极和泡沫镍空气阴极制成紧凑式6 L单室双空气阴极微生物燃料电池(MFC),研究不同阳极材料对电池启动过程和运行以乙酸钠为基质的人工废水和实际屠宰废水的产电性能和废水处理效果的影响,比较了单位阳极成本的产电效益.结果表明:阳极材料对紧凑式MFC的启动过程没有明显影响;在产电性能方面,碳刷阳极MFC在人工废水和屠宰废水中的输出功率密度最高,分别为(56.3±1.8)W·m~(-3)和(19.5±0.8)W·m~(-3),其次为碳布阳极MFC,分别为(46.0±1.7)W·m~(-3)和(16.9±0.6)W·m~(-3),最差的是石墨毡阳极MFC,分别为(40.8±1.5)W·m~(-3)和(11.9±0.5)W·m~(-3);在废水处理效果方面,不同阳极MFC在运行人工废水或屠宰废水时COD去除率没有明显差别,均在90%左右.碳刷阳极MFC所产生的经济效益最高,在运行乙酸钠和屠宰废水时分别为(3.44±0.08)m W·元-1和(0.97±0.05)m W·元-1,分别比碳布MFC和石墨毡MFC高18.6%、12.8%和38.7%、80%.本研究结果说明碳刷是微生物燃料电池实用化过程中最合适的阳极材料.  相似文献   

11.
以剩余污泥为接种液和基质,探讨了添加生物表面活性剂(鼠李糖脂/TSS,0.3 g·g-1)对单室剩余污泥微生物燃料电池(SSMFC)产电特性及剩余污泥减量化的影响.结果表明,在一个运行周期中,对照组的产电周期为20 d,最大功率密度为236.8 mW·m-2,库仑效率为5.7%,TCOD去除率为28.6%,TSS去除率为28.9%,VSS去除率为33.4%,而实验组产电周期达到35 d,库伦效率为11.8%,最大输出功率密度为516.7 mW·m-2,较对照组增加了118.2%,TCOD、TSS、VSS去除率分别为58.5%、56.7%和66.3%,较对照组分别提高了104.5%、96.2%和98.5%.随着系统的运行,对照组和实验组系统输出电压均是先稳定一段时间后逐渐降低,污泥中SCOD、蛋白质和溶解性糖浓度均呈先上升再下降趋势.采用向剩余污泥中投加鼠李糖脂的方法可以增强SSMFC的产电效率,同时能显著增强剩余污泥减量化效果.  相似文献   

12.
双室微生物燃料电池不同接种条件下处理薯蓣素废水   总被引:3,自引:2,他引:1  
比较了在5种不同接种条件下,利用双室微生物燃料电池(Microbial Fuel Cells,MFCs)处理薯蓣素生产废水的污染物去除和产电效果. 结果表明,该种废水可以用作微生物燃料电池的底物,在去除有机物的同时能够获得电能;采用全混合接种对污染物的去除效果最好,在350 h时CODCr去除率达到90%;采用污水处理厂厌氧污泥和薯蓣素废水驯化菌液混合接种的产电效果最好,在1 000 Ω的外电阻下得到了370 mV的输出电压,最大输出功率密度达到10.32 mW/m2;不同菌属在MFCs中的作用差别显著,产电与去污功能可能由不同优势菌属承担;初步富集到优势菌菌b,菌d和菌e;PCR-DGGE和DNA序列分析结果显示,菌d和菌e与β-变形菌具有较好的同源性.   相似文献   

13.
李辉  朱秀萍  许楠  倪晋仁 《环境科学》2011,32(1):186-192
以H型反应器研究了微生物燃料电池(MFC)利用黄姜废水产电的效果,并结合产电周期中阳极液氧化峰电位、COD、pH值等物化指标及进出水IR、GC-MS谱图变化讨论了MFC对黄姜废水污染物的去除特性.黄姜废水MFC内阻约480 Ω,最大功率密度可达1 18.1 mW/m2,外接1 000 Ω电阻时,5 mL黄姜废水所含有机...  相似文献   

14.
郭坤  李顶杰  李浩然  杜竹玮 《环境科学》2009,30(10):3082-3088
用夹子将质子交换膜和载铂量为0.2 mg/cm2碳纸固定在阳极室的短臂端口构成短臂型空气阴极微生物燃料电池.利用污泥电池从厌氧消化污泥中富集产电菌于石墨棒表面,循环伏安法检测发现这些微生物具有电化学活性.将富集好的石墨棒作为阳极用于短臂型空气阴极微生物燃料电池,以醋酸钠为底物时该电池的最大功率密度为738 mW/m2,内阻为280Ω,开路电压为741 mV.连续向阳极室通氮气和去掉质子交换膜可分别将电池的最大功率密度提高到745 mW/m2和759 mW/m2,当两者同时作用时最大功率密度可达到922 mW/m2,而这3种条件下电池的内阻仍保持在280Ω左右.当底物浓度在12.62~100.96 mg/L、外电阻为510Ω时,电池的最大输出电压和底物浓度之间存在明显的线性关系(R2=0.99).当底物浓度高于100.96 mg/L时,电池的最大输出电压不再增大并保持在302 mV(外电阻为510Ω).然而,电池的库仑效率则随着底物浓度的提高而提高,从31.83%逐渐增大到45.03%.  相似文献   

15.
剩余污泥为燃料的微生物燃料电池产电特性研究   总被引:11,自引:2,他引:9  
利用厌氧污泥作为接种体在不加入任何营养元素的条件下,经过20 d成功地启动了单室无膜微生物燃料电池.启动成功后对剩余污泥作为燃料产电特性以及底物的变化进行了研究.结果表明,微生物燃料电池产生的最大电压为495 mV(外电阻为1 000 Ω),最大功率密度达到44 mW·m-2,稳定期间内阻约为300 Ω.在1个运行周期中,污泥SS和VSS的去除率分别为27.3%和28.7%,pH值的变化范围为6.5~8.0, COD的起始浓度为617 mg·L-1,浓度随时间的增加而增大并稳定在1 150 mg·L-1左右,随后逐渐下降,糖的起始浓度为47 mg·L-1,逐渐增大到60 mg·L-1之后浓度逐渐下降.微生物燃料电池可以将剩余污泥中的化学能转化为最清洁的电能,为污泥资源化提供了新的思路.  相似文献   

16.
用高浓度对苯二甲酸溶液产电的微生物燃料电池   总被引:3,自引:1,他引:3  
以高浓度对苯二甲酸(TA)溶液为底物,研究微生物燃料电池的产电效果.以厌氧活性污泥作为接种体,经过210 h驯化,开路电压达到0.54 V,证明了TA可以作为微生物燃料电池的底物进行产电.深入研究了不同pH值和底物浓度对产电的影响,实验结果表明,当体系pH为8.0时,负载两端(R=1 000 Ω)电压最大,底物浓度越高,负载两端电压越大,并逐渐趋近于一个最大值,通过Monod方程回归得到该微生物燃料电池体系输出电压的最大值Umax为0.5 V,Ks值为785.2 mg/L.当底物浓度(以COD计)为4 000 mg/L时,最大输出功率密度为96.3 mW/m2,库仑效率为2.66%,COD去除率为80.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号