首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
In this article, the new and exciting techniques of infrared consequence spectroscopy (sometimes called action spectroscopy) of gaseous ions are reviewed. These techniques include vibrational predissociation spectroscopy and infrared multiple photon dissociation spectroscopy and they typically complement one another in the systems studied and the information gained. In recent years infrared consequence spectroscopy has provided long‐awaited direct evidence into the structures of gaseous ions from organometallic species to strong ionic hydrogen bonded structures to large biomolecules. Much is being learned with respect to the structures of ions without their stabilizing solvent which can be used to better understand the effect of solvent on their structures. This review mainly covers the topics with which the author has been directly involved in research: structures of proton‐bound dimers, protonated amino acids and DNA bases, amino acid and DNA bases bound to metal ions and, more recently, solvated ionic complexes. It is hoped that this review reveals the impact that infrared consequence spectroscopy has had on the field of gaseous ion chemistry. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:586–607, 2009  相似文献   

2.
3.
The ability of Paul and Penning traps to contain ions for time periods ranging from milliseconds to minutes allows the trapped ions to be subjected to laser irradiation for extended lengths of time. In this way, relatively low‐powered tunable infrared lasers can be used to induce ion fragmentation when a sufficient number of infrared photons are absorbed, a process known as infrared multiple photon dissociation (IRMPD). If ion fragmentation is monitored as a function of laser wavelength, a photodissociation action spectrum can be obtained. The development of widely tunable infrared laser sources, in particular free electron lasers (FELs) and optical parametric oscillators/amplifiers (OPO/As), now allows spectra of trapped ions to be obtained for the entire “chemically relevant” infrared spectral region. This review describes experiments in which tunable infrared lasers have been used to irradiate ions in Penning traps. Early studies which utilized tunable carbon dioxide lasers with a limited output range are first reviewed. More recent studies with either FEL or OPO/A irradiation sources are then covered. The ionic systems examined have ranged from small hydrocarbons to multiply charged proteins, and they are discussed in approximate order of increasing complexity. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:448–467, 2009  相似文献   

4.
Reactions of polypeptide ions with electrons in the gas phase   总被引:9,自引:0,他引:9  
Reactions of electrons in the energy range below 70 eV with polypeptide cations and anions are reviewed, as well as their applications for the structural analysis of polypeptides. At very low energies (相似文献   

5.
6.
7.
In this review, we present a general overview on the studies carried out on Ni(+-)- and Ni(2+)-containing systems in the gas phase since 1996. We have focused our attention in the determination of binding energies in parallel with an analysis of the structure and bonding of the complexes formed by the interaction of Ni(+) with one ligand, or in clusters where this metal ion binds several identical or different ligands. Solvation of Ni(2+) by different ligands is also discussed, together with the theoretical information available of doubly charged Ni-containing species. The final section of this review is devoted to an analysis of the gas-phase uni- and bimolecular reactivity of Ni(+) and Ni(2+) complexes.  相似文献   

8.
Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic pathways as shown by isotopic labeling experiments. These studies, including ion structure determinations, were performed with use of double focusing mass spectrometers of both conventional and reversed geometry, and equipped with various types of metastable ion scanning and collision-induced dissociation techniques developed by physical and analytical chemists. Time-resolved mass spectrometry by use of the field ionization kinetics method, developed by physical chemists, was another powerful way to unravel details of unimolecular gas phase ion dissociations. Then the development of new ionization methods, such as desorption chemical ionization, field desorption, and fast atom bombardment permitted not only to analyze unvolatile, thermally labile and higher molecular weight compounds, but also to study their chemical behavior in the gas phase, initially with use of double focusing instruments and later on with multisector and hybrid mass spectrometers. These ionization methods also enabled to study organometallic compounds and increasingly the field of medium-sized to large biomolecules, the latter being exploded in the last decade by the development of electrospray- and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Another area of research concerned the bimolecular chemistry of organic ions with organic molecules in the gas phase. Initially this was performed with use of among others drift-cell ion cyclotron resonance spectroscopy, that later on was replaced by the developed method of ion trapping and Fourier transform ion cyclotron resonance. Combination of the latter with the afore-mentioned ionization methods has shifted also in this case the research on organic molecules to organometallic/inorganic systems, and predominantly to biomolecules in the last decade. This invited review will describe the research efforts made by the author's group over the last 40 years together with some personal experiences during his career.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号