首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以单官能团笼状倍半硅氧烷(POSS)、八官能团笼状倍半硅氧烷(POSS)分别为引发剂,CuCl/2,2联吡啶为催化剂,采用原子转移自由基聚合方法制备了"蝌蚪"形、星形POSS/PMMA和POSS/PMMA-b-PS复合材料。研究结果表明:通过ATRP法,能成功制备具有特定结构的POSS/PMMA和POSS/PMMA-b-PS复合材料。相比于纯的聚合物基体,星形POSS/PMMA复合材料的热稳定性降低,"蝌蚪"形POSS/PMMA复合材料的热稳定性提高。"蝌蚪"形POSS/PMMA-b-PS比星形POSS/PMMA-b-PS的热稳定性好。  相似文献   

2.
综述了多面齐聚倍半硅氧烷(POSS)的结构、性能及其类型,分析和讨论了以反应型POSS制得的均聚物和共聚物及以非反应型POSS制得的聚合物/POSS纳米复合材料的特点及其应用,简要介绍了目前国外POSS及其相关物的生产及市场。  相似文献   

3.
实验发现将2种POSS(多面体低聚倍半硅氧烷)单体氨苯基异丁基POSS和八异丁基POSS置于四氢呋喃搅拌加热后,原来不发光的POSS单体表现出较强的发光。为解释这个发光现象,我们对溶剂处理前后的POSS材料进行了结构和发光性能表征,通过1HNMR、29Si NMR及红外光谱等方法表征了POSS材料在THF中加热处理前后的结构,实验结果表明,这两种POSS在处理前后结构几乎没有变化,可以保持完整的笼状结构,但处理后的POSS分子1H NMR谱中含有少量的溶剂峰。FTIR结果也表明处理前后的POSS结构几乎不变;我们也通过XPS表征了处理后的POSS中Si原子的价态,结果表明其价态未发生变化。结合这两种POSS材料处理前后的发光性能以及结构表征结果,我们认为,这种发光现象可能与POSS的吸附效应有关,即溶剂分子进入POSS笼中,形成POSS/溶剂加合物,从而改变了原来的POSS的电子结构,使得相应的POSS材料出现发光现象。  相似文献   

4.
星型POSS/PMMA复合材料的ATRP合成及其热性能研究   总被引:1,自引:0,他引:1  
以γ-氯丙基三乙氧基硅烷为原料合成八官能团γ-氯丙基多面体低聚倍半硅氧烷(POSS),以该POSS为引发剂,通过原子转移自由基聚合(ATRP)合成具有星型结构的POSS/PMMA复合材料.通过傅立叶红外(FTIR)、核磁共振(NMR)、凝胶渗透色谱(GPC)和X-射线衍射(XRD)等手段对POSS和POSS/PMMA的化学组成和结构进行了表征,结果表明已经合成八官能团γ-氯丙基POSS,POSS/PMMA复合材料具有分子设计的预定结构,且复合材料的分子结构得到了较好的控制.通过ATRP法实现了POSS在聚合物中的单分散.此外,TGA的研究表明,POSS的引入提高了聚合物的热稳定性.  相似文献   

5.
光致抗蚀剂又称光刻胶,是微电子加工过程中的关键材料。多面体低聚倍半硅氧烷(POSS)是一种具有规则的笼型结构的聚合物增强材料,由POSS改性的聚合物实现了有机-无机纳米杂化,POSS刚性结构的引入阻碍了聚合物分子的运动,可以显著提高聚合物的玻璃化转变温度(Tg),降低聚合物的介电常数,提高聚合物的力学性能,也提高了含POSS光致抗蚀剂的耐蚀刻性。基于这些优点,含POSS的光刻胶材料得到广泛关注。本文对含POSS光刻胶的研究进展作了简要介绍。  相似文献   

6.
多面体低聚倍半硅氧烷(POSS)是新兴的有机/无机杂化材料,其特殊的笼状结构可以从纳米尺度上影响聚氨酯体系的结晶行为、微相分离程度、交联密度等结构特征。少量添加即可大幅提高聚氨酯的耐水性、热稳定性、力学性能,以及阻燃性能、黏结性能、韧性等。本文从POSS/聚氨酯复合材料的结构出发,介绍了化学合成POSS基聚氨酯及物理共混POSS/聚氨酯复合材料,总结分析了悬垂型、星型、串珠型以及物理混合POSS基聚氨酯复合材料的结构特点,以及POSS结构差异对其复合材料性能的影响与影响机理。  相似文献   

7.
用于聚合物纳米复合材料的化学改性POSS   总被引:3,自引:0,他引:3  
综述了多面齐聚倍半硅氧烷(POSS)与聚合物的相容性、用于使POSS化学改性的有机反应以及改性POSS作为聚合物纳米复合材料的添加型及反应型纳米填料的实例.  相似文献   

8.
本研究通过Wittig反应合成了同时含有金属和双键的新型磁性多面体齐聚倍半硅氧烷POSS1(Fc-CH=CH-C6H6-(C4H9)7Si8O12,Fc:Ferrocene),并通过FTIR1、H-NMR1、3C-NMR2、9Si-NMR对其化学结构进行了表征。将其加入苯乙烯中通过自由基本体聚合制备了聚苯乙烯/POSS1纳米复合材料。XRD和TEM结果表明,POSS1在纳米材料中含量为1%(wt)和3%(wt)时可达分子级分散,而含量为5%(wt)时部分POSS1以晶体形式存在。热失重分析表明PS/POSS1纳米材料较纯PS热稳定性增加,含5%(wt)POSS1的纳米复合材料起始分解温度比纯PS的约提高了19℃。PS/POSS1纳米材料的玻璃化转变温度较纯PS明显提高。  相似文献   

9.
笼形倍半硅氧烷(POSS)是基于化学键合作用而形成的分子内杂化体系,这种有着规整立体结构同时具有单纳米尺度的有机无机杂化分子引起了研究人员的广泛关注,独特的纳米笼形结构也为分子水平上改进高分子的科学研究提供了可能性.本文综述了多面体倍半硅氧烷(POSS)的结构、性能与合成方法,重点介绍了巯基POSS、金属杂化POSS、...  相似文献   

10.
多面体低聚笼型倍半硅氧烷(POSS)是一类分子内有机-无机杂化材料。该材料因为同时含有笼型的Si—O—Si核及键合在Si顶点上可设计的有机基团,所以兼具无机材料高的强度和耐温性以及有机基团灵活的可设计性,可广泛用于聚合物的改性。反应型POSS是指POSS上的有机基团与其改性聚合物有较高的反应活性,可以共价键合于聚合物分子链上,提高POSS在聚合物基体中的分散性,增强其界面粘接作用,更大程度提高聚合物的性能。本文综述了近年来反应型POSS的合成,POSS在聚合物增韧补强、耐热阻燃性能、介电性能改性等领域的研究进展,总结了POSS改善无机纳米粒子在聚合物改性体系分散性能方面的研究进展,并指出了今后的发展方向。  相似文献   

11.
The domain structure and mobility of poly(propylmethacryl-heptaisobutyl-pss)-co-styrene nanocomposites with different polyhedral oligomeric silsesquioxane (POSS) contents were investigated by various solid-state NMR techniques in combination with XRD. The NMR relaxation time measurements suggested that increasing POSS content trended to mobilize the chains in PS unit. Although XRD results showed that POSS was well dispersed into the polymer matrix, 2D WISE NMR indicated that the dispersion of POSS into the polymer matrix led to a composite structure composed of rigid and densely packed PS domain and mobile and amorphous POSS domain. This implied that the size of the two domains was very small. 2D HETCOR NMR implied that the distance between PS network and POSS unit gradually decreased when the POSS content successively increased. The dispersed POSS domain size determined by 2D spin-diffusion NMR experiments was increased with the POSS loading, being about 3.0, 3.9, 6.0 nm for the POSS15, POSS25 and POSS45 nanocomposites, respectively.  相似文献   

12.
Hybrid organic–inorganic polymer nanocomposites incorporating polyhedral oligomeric silsesquioxane (POSS) nanoparticles are of increasing interest for high performance materials applications. Octaisobutyl POSS/polypropylene nanocomposites were prepared at varying POSS concentrations via melt blending. The interplay of POSS molecular geometry, composition, and concentration in relation to the tribological, nanomechanical, surface energy, and bulk properties of the nanocomposites were investigated. Ultra‐low friction and enhanced hardness, modulus, and hydrophobicity were observed for the nanocomposite surfaces, with minimal changes in the bulk thermomechanical properties. Parallel AFM, SEM, TEM, and spectroscopic analyses demonstrated significant differences in POSS distribution and aggregation in the surface and the bulk, with preferential segregation of POSS to the surface. Additionally, contact angle studies reveal significant reduction in surface energy and increase in hysteresis with incorporation of POSS nanoparticles. The differences in bulk and surface properties are largely explained by the gradient concentration of POSS in the polymer matrix, driven by POSS/POSS and POSS/polymer interactions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2441–2455, 2007  相似文献   

13.
This work reports on the preparation of polyurethane foams (PUFs) chemically modified by functionalized 1,2‐propanediolisobutyl polyhedral oligosilsesquioxane (PHI‐POSS) as pendant groups and octa(3‐hydroxy‐3‐methylbutyldimethylsiloxy) POSS (OCTA‐POSS) as chemical crosslinks. The resulting foams, which contain 0 to 15 wt% POSS (versus polyol), were characterized in terms of their structure, morphology, density, thermal conductivity, compressive strength, and water absorption. Fourier transform infrared‐attenuated total reflectance revealed good reaction rate between POSS and PUF. PHI‐POSS suppresses the formation of the hydrogen bonds in the soft phase. The composite foams with OCTA‐POSS showed a reduced number of cells and increased average area of foam cells in comparison with the PUF, while the addition of PHI‐POSS causes an increase in the number of cells of the foam as compared with the reference, and thus a reduction in the average area of cells. Scanning electron microscopy–energy‐dispersive X‐ray spectroscopy analysis revealed that POSS moieties form lamellae‐shaped crystals of different sizes, distributed homogeneously in the bulk (PHI‐POSS) or close to the self surfaces (OCTA‐POSS). The compressive strength of PUF/POSS hybrids in the direction parallel and perpendicular to the direction of foam rise is greater than the strength of the reference foam. PHI‐POSS improves monotonically the compressive strength in the studied loading range. About 5 wt% OCTA‐POSS also provides reinforcement, but further loading reverses the phenomenon. PUF/POSS hybrids absorb less water than the pristine foam because of an increase of foam density. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The thermal properties and morphological development of isothermally crystallized isotactic polypropylene (iPP) blended with nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules at very small loading of POSS were studied with differential scanning calorimeter (DSC), thermal gravimetric analysis, dynamic mechanical analysis, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The result of DSC indicated that the crystallization rate of iPP increases with the increase in POSS contents during crystallization; moreover, the melting temperature of iPP/POSS nanocomposites slightly decreases, while the heat of fusion increases with the addition of POSS molecules at melting and remelting traces. The storage modulus and thermal stability, respectively, remarkably decrease, while the glass transition temperature of isothermally crystallized iPP/POSS nanocomposites increases slightly with the increase in POSS contents. The morphologies results of WAXD and POM show that the POSS molecules form about 35 nm sized nanocrystals and aggregate to form thread‐like and network structure morphologies, respectively, in the molten state even when the POSS content is very small. These results, therefore, suggest that the interaction force between the POSS molecules should be larger than the force between POSS molecules and iPP matrix; however, those interactions depend on the chain length of functionalized substituents on the POSS cage. Therefore, the POSS molecules aggregate forming nanocrystals and act as an effective nucleating agent for iPP and influence the thermal properties of iPP/POSS nanocomposites due to the shorter chain length of functionalized substituents, methyl, on the POSS cage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2122–2134, 2006  相似文献   

15.
Thermally induced polymerization of multifunctional methylmethacrylate POSS (MMA‐POSS) was studied in this work for preparation of polymer/POSS nanocomposites. The polymerization of MMA‐POSS could be promoted with benzoyl peroxide (BPO). Self‐assembly of POSS into a layer‐by‐layer structure in the MMA‐POSS polymer (TP‐MMA‐POSS) is observed with a transmission electron microscopy. An ultra‐low‐k value of about 1.85 is measured with TP‐MMA‐POSS. In addition, polyimide‐POSS nanocomposites are also prepared. These nanocomposites demonstrate good homogeneity and enhanced mechanical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5157–5166, 2008  相似文献   

16.
The mechanism of thermal degradation of several substituted polyhedral oligomeric silsesquioxanes (POSS) cages is studied in this work.Hydrogen POSS and methyl POSS shows incomplete sublimation on heating, both in inert atmosphere and in air. Isobutyl and octyl substituted POSS undergo an almost complete evaporation when heated in inert atmosphere. In air, oxidation competes with volatilization, producing a considerable amount of silica-like residue on heating up to 800 °C.Phenyl POSS shows a higher thermal stability than saturated aliphatic POSS and limited volatility, producing a ceramic residue at high yield on heating in nitrogen, composed of a silica containing a considerable amount of free-carbon. A lower amount of residue is shown after heating in air, corresponding to the POSS Si-O fraction.A vinyl POSS cage/network resin is also studied, in comparison to above materials, showing the highest ceramic yield.  相似文献   

17.
Organosoluble polyhedral oligomeric silsesquioxanes (POSS) blending effect on electroluminescence properties of MEH-PPV based polymer light emitting device was investigated. Excellent compatibility and surface morphology of organosoluble POSS and MEH-PPV based composite films were observed using AFM spectroscopy. The surface roughness of POSS:MEH-PPV composite film increased with increasing POSS content. Interfacial area between the light-emitting layer and cathode was favorably enhanced for cathode electron-injection. MEH-PPV blended with POSS would create a better balance between the electron and hole fluxes for POSS:MEH-PPV composite film based devices. This led to greater current efficiency of the POSS:MEH-PPV composite film based device as compared to one with a light emitting layer of MEH-PPV. Organosoluble POSS concentration effects on the PL spectra and EL performances were also studied for the POSS:MEH-PPV composite film based polymer light emitting devices.  相似文献   

18.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

19.
We have developed an efficient and versatile method for the synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐polymethacrylate hybrids, such as POSS‐poly(methyl methacrylate) (POSS‐PMMA), POSS‐poly(ethyl methacrylate) (POSS‐PEMA), and POSS‐poly(benzyl methacrylate) (POSS‐PBzMA) of controllable molecular weights and low polydispersities by thiol‐mediated radical polymerization at elevated temperature (100 °C). By tuning the reactant concentrations and degree of polymerization of the grafted polymethacrylate chains, POSS content in these hybrid materials could be varied. MALDI‐TOF‐MS analysis of the hybrid molecule shows that the nanoscale POSS moiety is connected to the end of polymethacrylate chain through the sulfur atom bridge. These hybrid materials were further characterized using various techniques such as FTIR, XRD, NMR, TGA, and DSC. In all synthesized hybrids, the incorporation of POSS moiety at the end of polymethacrylate chain resulted in the decrease of glass transition temperature (Tg) compared to that of neat polymethacrylates of comparable molecular weights. Surprisingly, POSS‐PMMA hybrids only with relatively high POSS content (~ 10 and 16 wt %) showed physical aging behavior as reveled by DSC study. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1111–1123, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号