首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于台架试验分析了油液温度对抗蛇行减振器动态特性影响(即温变特性),并模拟分析了抗蛇行减振器在实际工作服役过程中动态特性变化情况(即时域特性),借助于SIMPACK软件对抗蛇行减振器油液温度对车辆安全性影响进行了仿真分析。研究结果表明:随着油液温度升高,减振器吸收的能量、动态刚度和动态阻尼均减小,油液温度对相位角影响不明显;低温(小于0℃)对减振器吸收的能量、动态刚度和动态阻尼影响大于高温(大于0℃)对其影响。不论是低温还是常温,抗蛇行减振器在模拟时间5 h内,其动态特性变化不是很大。仿真结果表明抗蛇行减振器内部油液温度变化不会影响行车安全。  相似文献   

2.
外界环境温度对减振器油液的黏性有一定的影响,从而对减振器动态特性及车辆动力学性能造成影响.以我国某动车组用抗蛇行减振器为例,对减振器油液温度及其动态及静态性能展开了研究.首先对蛇行减振器结构、工作原理及黏温特性进行了理论分析,再对抗蛇行减振器进行了台架试验认证.研究表明,油液温度对油液的黏性影响很大,进而影响了减振器的动态特性.且随着油液温度升高,减振器吸收的能量越来减少,而其总体动态特性随着温升也有所减小.低温对减振器的影响要远远大于高温,这是由于油液的黏度随着温度升高而减小,且低温对油液黏度的影响大于高温引起的.  相似文献   

3.
为了研究抗蛇行减振器油液温度对其动态特性和整车动力学性能的影响,对我国某高速动车组抗蛇行减振器进行了试验和动力学仿真分析。试验结果表明,在油液正常工作温度范围内,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度的降低而增加;而当油液温度超出抗蛇行减振器油液正常工作范围时,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度降低而降低。仿真结果表明,在油液正常工作温度范围内,蛇行临界速度随油液温度的降低而增大,而当油液温度超出正常工作温度范围时,蛇行临界速度随温度降低而降低,油液温度对车辆平稳性、安全性影响并不明显。  相似文献   

4.
为了提高车辆动力学计算机仿真精度,研究抗蛇行减振器力学模型及其对车辆动力学性能的影响,基于可压缩流体的压力?流量特性建立了我国某高速动车组抗蛇行减振器非线性力学模型,并对其进行了试验和动力学仿真分析。结果表明:相比传统分段线性模型,抗蛇行减振器非线性力学模型能够同时体现黏性阻尼力和油液被压缩而产生的回复力,仿真计算结果与试验结果吻合良好;基于抗蛇行减振器非线性力学模型计算的临界速度会随踏面等效锥度的增加而先增大后减小,计算的横向平稳性指标较高,且随速度增加而增加的趋势更显著。研究表明,抗蛇行减振器非线性力学模型能够有效提高动力学仿真精度,对车辆的蛇行运动稳定性和横向平稳性有较大影响,但对垂向平稳性和曲线通过安全性的影响较小。  相似文献   

5.
分析了油液温度对抗蛇行减振器动态特性的影响,比较了不同油液类型不同温度时对减振器动态特性的影响,并对抗蛇行减振器在工作过程中油液温变特性进行了研究。结果表明:随着油液温度的降低,减振器吸收的能量、动态阻尼和动态刚度越来越越大,低温时油液温度对减振器动态特性影响大于高温时。不同油液类型对抗蛇行减振器动态特性影响非常大,A油液对温度敏感程度大于B油液;不论低温还是常温,减振器连续不断工作,短时间(140min)内温度有所上升,但由于散热快,上升都不是很大,温度随时间呈斜率增加式非线性增加,即温度上升越来越快。  相似文献   

6.
基于多体动力学理论及某型动车组的拓扑结构关系,利用SIMPACK建立了17体、50自由度的某型动车组单节车模型,仿真分析了一系垂向减振器阻尼、二系垂向减振器阻尼和抗蛇行减振器失效对其运行平稳性的影响。研究结果表明,随着一系垂向减振器阻尼的增大,其垂向平稳性逐渐变好,达到最优值后再逐渐变差,即优化一系垂向阻尼可以改善运行平稳性;随着二系垂向减振器阻尼的增大,其垂向平稳性变差,二系垂向阻尼显著影响运行平稳性。为了使单节车运行舒适性指标达到2级,在3个抗蛇行减振器失效工况下动车组可以在200km/h速度范围内平稳运行,在2个抗蛇行减振器失效工况下动车组可以在250 km/h速度范围内平稳运行。  相似文献   

7.
利用流体建模仿真软件AMESim和多体动力学分析软件SIMPACK分别建立抗蛇行减振器和高速车辆的仿真模型,通过联合仿真比较抗蛇行减振器阻尼分别采用F—v实时特性曲线和等效线性阻尼时车辆的动力学性能,并对比分析车辆在抗蛇行减振器失效、车轮磨耗后车辆的运动稳定性。计算结果表明:采用F—v实时特性曲线时车辆的临界速度高于采用等效线性阻尼的临界速度,且运行平稳性也更好,但二者对车辆的曲线通过安全性的影响不大;减振器失效时,车辆的蛇行运动失稳临界速度显著降低。  相似文献   

8.
针对北京地铁车辆装备有限公司和西南交通大学牵引动力国家重点实验室设计的120 km/h A型地铁转向架,建立其动力学模型并计算了相关动力学性能指标,分析该转向架设计合理性;基于动力学仿真结果,进一步对该转向架在机车车辆整车滚动振动试验台上进行了滚振动力学试验,并给出车辆在空簧失气故障工况条件下运行时的合理建议.仿真计算与试验结果表明,该A型地铁车辆具有良好的蛇行运动稳定性,在美国V级直线线路上以40~120 km/h速度运行时的平稳性达到优级标准,其临界速度及运行平稳性均能够满足线路上最高运行速度120 km/h的要求,为该转向架上线提供了理论依据及试验参考.空簧失气后,车辆非线性临界速度大幅度降低,安全性指标(轮轴横向力、轮轨垂向力、脱轨系数、轮重减载率)有所增加,而其垂向平稳性指标较原车正常工况明显增大,并且运行速度越高差距越大,若车辆在运行过程中出现空簧失气故障现象,应立即降低车辆运行速度,为保证运行品质,建议限速80 km/h.  相似文献   

9.
低温环境对高速动车组动力学性能影响显著,需要掌握低温下的车辆参数变化范围,针对-40℃或极低温工况鲜有研究。基于悬挂元件低温特性试验结果,建立高寒动车组非线性动力学仿真模型,并将常温环境下的动力学仿真结果与线路试验结果进行对比验证;将车辆系统悬挂参数、轮轨匹配、轮轨界面参数考虑为正态随机分布,采用拉丁超立方采样方法组合得到300种计算工况,仿真研究高寒动车组在-40℃低温环境运行时的动力学性能。300 km/h速度条件下,车辆运行稳定性和安全性能满足标准要求,但新镟修车轮在直线运行工况下的横向平稳性较常温环境下差,主要是由于车辆发生了横向低频晃动;低温引起橡胶元件和减振器的刚度和阻尼增大,导致在与车体上心滚摆接近的频率范围内,前后转向架同向蛇行运动的阻尼比降低,引发以车体滚摆为主的横向晃动,因此高寒动车组需要注意预防新镟轮后的车体晃动现象。为低温环境下的高速动车组悬挂参数使用范围和动力学性能设计提供了参考。  相似文献   

10.
运用动力学软件SIMPACK建立了我国某高速动车组动力学模型,仿真分析了车端减振器卸荷速度、卸荷力对该动车组动力学的影响.这一研究对车端纵向减振器参数的设计及优化具有一定指导意义,即具有一定工程应用价值.动力学仿真结果表明:该动车组稳定性、平稳性随着卸荷速度增加有所恶化,当卸荷速度大于0.005m/s时,卸荷速度对车辆安全性影响较小;稳定性、平稳性随着卸荷力增加有所改善,当卸荷速度大于0.005m/s时,卸荷力对车辆安全性影响不明显.  相似文献   

11.
橡胶弹性元件在轨道车辆中的普遍采用,对提高车辆系统安全性和平稳性具有重要的作用。为研究低温环境下橡胶弹性元件动态特性对城轨车辆动力学性能的影响,开展低温环境(-40℃~20℃)下转臂节点、叠层橡胶等橡胶元件动态参数测试,建立了低温环境下城轨车辆动力学模型并进行动力学仿真分析。结果分析表明:橡胶元件动态刚度随激振频率的增加而增大,动态阻尼随激振频率的增大而降低,两者随环境温度的降低有明显的增大趋势,且低温环境下的频变特性更为显著。随着环境温度降低,城轨车辆临界速度逐渐降低,横向平稳性呈现减小趋势,但对垂向平稳性影响较小。轮轴横向力、脱轨系数及磨耗指数等曲线通过性能随环境温度降低显著恶化,特别在橡胶元件玻璃化转变温度附近较为明显。  相似文献   

12.
在对五模块中低速磁悬浮车辆进行结构分析和运动分析的基础上,利用SIMPACK软件建立了90个自由度的整车动力学模型,并对磁悬浮车辆进行了动力学性能仿真。仿真结果表明:中低速磁浮车辆车体的垂向运行平稳性主要受二系垂向阻尼影响,而横向运行平稳性主要受滑台滑块之间的摩擦系数影响,受该磁悬浮车辆悬挂结构的制约,该磁浮车的最大运行速度不能超过90 km/h;通过曲线时,车体的最大横移量、侧滚角与各悬浮侧架的最大横移量、侧滚角、摇头角都随着通过速度的增大而增大,其中,1,2位与4,5位悬浮架的曲线性能基本对称。悬浮侧架与轨道间的最小横向间隙随着速度增大而减小,当速度为80 km/h时,悬浮侧架上的导向轮与轨道已接触,所以该磁浮车通过半径为300 m的曲线时速度应限制在80 km/h以下,最好不超过70 km/h。  相似文献   

13.
为了研究低温状态下高速动车组的蛇行稳定性,对我国某高速动车组的转臂定位节点和抗蛇行减振器分别进行了试验和仿真分析。试验结果表明,在正常工作温度范围内,温度越低,转臂定位节点的动态刚度与动态阻尼越大。在-50~20℃范围内,随着温度的降低,抗蛇行减振器动态刚度逐渐增加,温度越低,减振器动态刚度变化越明显;卸荷速度前,温度越低,动态阻尼越大;卸荷速度后,温度越低,动态阻尼越小;温度越低,动态阻尼变化越显著。仿真结果表明,随着温度的降低,车辆运行的蛇行临界速度先增大后减小,但是始终高于设计时速,说明温度的变化不会使列车失稳。  相似文献   

14.
通过对某出口内燃动车利用SIMPACK动力学分析软件建立刚柔耦合模型,计算了车辆在不同运行速度工况下,车辆运行平稳性和舒适性;并对车辆由轮轨激励和柴油机组激励进行振动贡献量分析。计算结果表明在各运行速度下,车辆的垂向平稳性等级均为1级,评定为优;在20 km/h时舒适度为1级,40 km/h和60 km/h时为2级,80 km/h和100 km/h为3级;在低速(20 km/h)时,机组激励大于轮轨激励;随着运行速度的增加,轮轨激励的贡献量逐渐增大,机组激励的贡献量逐渐减小。  相似文献   

15.
《机械》2017,(9)
为了提高铁路建设的效率,提出了市域铁路快速轨道车转向架的总体设计方案,并从动力学角度进行了校验。利用SIMPACK仿真软件计算出所设计的转向架曲线通过时最大脱轨系数为0.61,最大轮重减载率为0.6;蛇行失稳临界速度为275 km/h,车辆垂向平稳性指标为2.015,横向平稳性指标1.906。仿真结构表面,转向架各项性能满足市域铁路快速轨道车的要求,具有较高的工程实用价值。  相似文献   

16.
为了揭示我国最新研发的转向架群配置高速货运动车组车辆动力学特性,本文综合考虑车辆三系悬挂与转向架群配置的结构和功能特点,基于多体系统动力学理论,建立了转向架群配置的高速货运动车组车辆系统动力学模型。仿真分析了空、重车情况下车辆以不同速度通过曲线的轮轨动态相互作用、车辆运行安全性、车辆运行平稳性等动态性能指标。研究结果表明:①无论空车或重车在本文仿真计算的曲线工况下其各项动力学指标均在限值之内;②轮轨动态相互作用和车辆运行安全性随着速度的增加基本都呈现先减小后增大的趋势,最小值基本都在车速325km/h左右出现;③重车轮轨动态相互作用以及倾覆系数均大于空车,而脱轨系数则是空车大于重车;④车体垂向加速度以及垂向平稳性指标随车辆运行速度变化较小,横向加速度随车速增大而增大,横向平稳性指标则有先增大后减小再增大的趋势,垂向或横向平稳性指标都为优。  相似文献   

17.
为得到油压减振器特性参数对高速动车组临界速度和轮轨磨耗的影响,以CRH380B型动车组为实例,基于车辆动力学理论,采用动力学仿真软件SIMPACK建立动力学模型,对二系横向减振器、抗蛇行减振器的橡胶节点刚度和阻尼特性进行研究。结果表明:抗蛇行减振器橡胶节点刚度最优值在10~12 MN/m范围内,当节点刚度小于此范围时,临界速度显著下降,轮轨磨耗功率缓慢增加;节点刚度大于此范围时,临界速度缓慢下降,但磨耗功率急剧增加。二系横向减振器橡胶节点刚度对临界速度和轮轨磨耗的影响较小,其最优取值为4.25 MN/m。抗蛇行减振器和二系横向减振器阻尼特性对临界速度和轮轨磨耗均有一定影响。  相似文献   

18.
基于SIMPACK建立某高速列车动力学模型,主要从橡胶节点刚度、卸荷速度、卸荷力等方面分析了抗蛇行减振器对列车的动力学性能影响,并对各性能参数进行优化选择,同时,从实验角度研究了油液温度对减振器阻尼特性影响。分析结果表明:油温对减振器阻尼特性影响很大;随着卸荷速度的增加,车辆系统动力学性能有所恶化;随着卸荷力的增加,车辆系统动力学性能有所改善;橡胶节点刚度对车辆动力学性能影响与卸荷速度选取值有关。对橡胶节点刚度优化选取在5~10 MN/m范围内变动,卸荷速度选取为0.01 m/s,卸荷力选取为12 k N,此时,车辆动力学性能可以达到最优范围。  相似文献   

19.
为研究铁路重载货车车轮轮径差状态下的动力学响应,进而为轮对车轮轮径差间接识别作基础支撑,建立了 C80铁路重载货车动力学模型;根据国内相关动力学评价标准,计算车辆在车轮轮径差状态下的动力学性能,包括车辆蛇行临界速度、运行平稳性和安全性等;并对车辆进行现场试验验证.结果表明:车轮轮径差对车辆蛇行临界速度、运行平稳性和安全性均存在一定程度的影响;在5 mm同轴轮径差范围内,车辆各动力学指标均满足国家相关标准;车辆动力学响应与车轮轮径差存在一定程度的映射关系.  相似文献   

20.
为研究铁路重载货车车轮轮径差状态下的动力学响应,进而为轮对车轮轮径差间接识别作基础支撑,建立了 C80铁路重载货车动力学模型;根据国内相关动力学评价标准,计算车辆在车轮轮径差状态下的动力学性能,包括车辆蛇行临界速度、运行平稳性和安全性等;并对车辆进行现场试验验证.结果表明:车轮轮径差对车辆蛇行临界速度、运行平稳性和安全性均存在一定程度的影响;在5 mm同轴轮径差范围内,车辆各动力学指标均满足国家相关标准;车辆动力学响应与车轮轮径差存在一定程度的映射关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号