首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The static corrosion tests in lead-bismuth eutectic (LBE) were conducted from 450 °C to 600 °C to understand corrosion behavior and develop corrosion resistant materials for heavy liquid metal systems. While increase of Cr content in steels enhances corrosion resistance in LBE, the effect approaches a constant value above 12 wt% of Cr. Corrosion depth in LBE increases with increasing temperature and corrosion attack becomes severe above 550 °C even under the condition of high oxygen concentration. Nickel dissolution and Pb-Bi penetration occur in 316SS and JPCA above 550 °C under the condition of high oxygen concentration. When oxygen concentration decreases below the level of Fe oxide formation, corrosion attack on these steels also becomes violent due to dissolution of various elements and grain boundary corrosion. Whereas additions of 1.5 wt% Si to T91 and 2.5 wt% Si to 316SS improve corrosion resistance, the effect is insufficient taking fluctuation of oxygen concentration in LBE into consideration. Furthermore, addition of 1.5 wt% Si to T91 causes rise in DBTT. A new coating method using Al, Ti and Fe powders produces corrosion resistant coating layers on 316SS. The coating layers containing 6-8 wt% Al exhibit good corrosion resistance at 550 °C for 3000 h in LBE containing 10−6-10−4 wt% of oxygen.  相似文献   

2.
The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.  相似文献   

3.
In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler (TM,E = 123.5 °C for LBE, 327 °C for lead) with the ductility recovery found at 425 °C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 °C, and for the T91/lead system at 525 °C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.  相似文献   

4.
In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 °C and 500 °C.During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 °C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 °C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.  相似文献   

5.
Exposure tests of an oxide dispersion strengthened martensitic type steel (ODS) were performed in stagnant lead bismuth eutectic (LBE) containing 10−4, 10−6 and 10−8 wt% of oxygen at 500-650 °C up to 10 000 h. It resulted that the base metal was protected from corrosion by the formation of a magnetite and spinel layer in liquid Pb45Bi55 containing 10−6 wt% of oxygen at 550 °C or less, not however, at higher temperatures. At 650 °C and 10−8 wt% of oxygen, the ODS steel showed good compatibility with LBE by formation of a thin mixed high chromium spinel layer, while at 10−4 wt% multilayers of magnetite and spinel develop at this temperature which break off but are renewed by oxide layers which protect the steel again.  相似文献   

6.
Motivated by an increased interest in heavy liquid metal (lead or lead alloy) cooled fast reactors (LFR) and accelerator-driven system (ADS), the present paper presents a study on resistance characteristics and heat transfer performance of liquid lead bismuth eutectic (LBE) flow through a straight-tube heat exchanger and a U-tube heat exchanger. The investigation is performed on the TALL test facility at KTH. The heat exchangers have counter-current flow arrangement, and are made from a pair of 1-m-long concentric ducts, with the LBE flowing in the inner tube of 10 mm I.D. and the secondary coolant flowing in the annulus. The inlet temperature of LBE into the heat exchangers is from 200 °C to 450 °C with temperature drops from 0 °C to 100 °C within the LBE flow range of Re = 104-105. Analysis of the experimental results obtained provides a basic understanding and quantification of the regimes of lead-bismuth flow and heat transfer through a straight tube and a U-shaped tube. The unique data base also serves as benchmark and improvement for system thermal-hydraulic codes (e.g. RELAP, TRAC/AAA) whose development and testing were dominantly driven by applications in water-cooled systems. Lessons and insights learnt from the study and recommendations for the heat exchanger selection are discussed.  相似文献   

7.
Corrosion tests of several US martensitic and austenitic steels were performed in a forced circulation lead-bismuth eutectic non-isothermal loop at the Institute of Physics and Power Engineering (IPPE), Russia. Tube and rod specimens of austenitic steels 316/316L, D-9, and martensitic steels HT-9, T-410 were inserted in the loop. Experiments were carried out simultaneously at 460 °C and 550 °C for 1000, 2000 and 3000 h. The flow velocity at the test sections was 1.9 m/s and the oxygen concentration in LBE was in the range of 0.03-0.05 wppm. The results showed that at 460 °C, all the test steels have satisfactory corrosion resistance: a thin protective oxide layer formed on the steel surfaces and no observable dissolution of steel components occurred. At 550 °C, rod specimens suffered rather severe local liquid metal corrosion and slot corrosion; while tube specimens were subject to oxidation and formed double-layer oxide films that can be roughly described as a porous Fe3O4 outer layer over a chrome-rich spinel inner layer. Neglecting the mass transfer corrosion effects by the flowing LBE, calculations based on Wagner’s theory reproduce the experimental results on the oxide thickness, indicating that the oxide growth mechanism of steels in LBE is similar to that of steels in air/steam, with slight modification by dissolution and oxide dissociation at the liquid metal interface.  相似文献   

8.
The sensitivity of liquid metal embrittlement of the T91 martensitic steel is investigated with small punch tests at 300 °C in air and in lead bismuth eutectic (LBE). The material was studied in six tempering conditions corresponding to different values of hardness. An effect of LBE has been observed for all the materials excepted for T91 steel tempered at 750 °C, the more ductile material. In high strength materials (T91 steel as quenched, tempered at 600 °C or 500 °C), a ductile to brittle transition is induced by liquid metal, confirmed by the observation of brittle fracture. In relative high strength materials (tempered at 650 °C and 700 °C), LBE promotes a decrease in mechanical properties and a reduction of the ductility of materials, with a mixed ductile and brittle fracture.  相似文献   

9.
This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb45Bi55) up to 550 °C, if 10−6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 °C and thick oxide scales like the martensitic steel at 550 °C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 °C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times.  相似文献   

10.
Lead-bismuth eutectic (LBE) has good characteristics for the coolant and/or target of various nuclear systems, but it also has a problem of polonium contamination. In the study, baking experiment was performed to remove polonium contamination on type 316 stainless steel plate that was originated from neutron irradiated LBE. The contaminated type 316 stainless steel plate was baked in a vacuum condition at various temperatures from 200°C to 600°C. In the previous preliminary study, the effect of short time baking was investigated. In the study, the effect of long time baking was investigated. The detail of the experimental method was also described. The result of long time baking experiment showed that the baking method was effective for removal of polonium from stainless steel surface contaminated by neutron irradiated LBE, if the baking was performed at 500°C and higher in a vacuum condition. The obtained result was consistent to the previous preliminary study.  相似文献   

11.
The behaviour of protective oxide layers on P122 steel and its welds and of ODS steel in liquid Pb44.5Bi55.5 (LBE) is examined under conditions of changing temperatures and oxygen concentrations. P122 (12Cr) and its welded joints are exposed to LBE at 550 °C for 4000 h with oxygen concentrations of 10−6 and 10−8 wt% (p(O2) = 8.1 × 10−23 bar and 5.2 × 10−27 bar) which change every 800 h. It is found that like in case of constant oxygen concentration of 10−6 wt% a protective spinel layer (Fe(Fe1−xCrx)2O4) was maintained on P122 and also on its welded joint. Two experiments with exposure times of 4800 h are conducted on ODS steel, both with temperatures changing from 550 to 650 °C and back every 800 h, one experiment with 10−6 the other with 10−8 wt% oxygen in LBE. Both experiments show strong local dissolution attack after 4800 h which is in agreement with the behaviour of ODS in LBE at a constant temperature of 650 °C. However, dissolution attack is less in LBE with 10−8 wt% oxygen (p(O2) = 3.0 × 10−25 bar).  相似文献   

12.
Corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperature was investigated by examination of samples after 1000, 2000, and 3000 h of exposure at 550 °C, using SEM, XPS with sputter depth profiling, and TEM. The process by which localized oxide failure becomes extensive thick oxide formation was investigated. Under our experimental conditions, iron was observed to migrate outward while chromium did not migrate above the original metal surface. The thin oxide layer on the D-9 sample resembled 316L cold-rolled samples, while the thick oxide on D-9 resembled annealed 316L oxide. With continued exposure, thick oxide grew to cover the entire surface.  相似文献   

13.
The present work aims to investigate the susceptibility of ferritic/martensitic steels of different strength to the embrittlement of liquid Pb-Bi eutectic (LBE). Slow strain rate tensile (SSRT) tests on specimens of the T91 steel in three tempering conditions at 500, 600 and 760 °C were conducted in Ar and in LBE at temperatures between 150 and 500 °C. For the specimens tempered at 760 °C (the normal tempering condition) the susceptibility of the steel to LBE embrittlement appeared at temperatures between 300 and 450 °C. With increasing the strength of specimens by lowering the tempering temperature, specimens tempered at 600 and 500 °C demonstrated more pronounced embrittlement effects, reflected by wider and deeper ‘ductility-troughs’. The results suggest that ferritic/martensitic steels with higher strength are more susceptible to LBE embrittlement. The LBE embrittlement effects can be attributed to the decrease of fracture stress resulted from the ‘weakening inter-atomic bond’ by LBE contacting at crack tips.  相似文献   

14.
Ferritic/martensitic (F/M) steels (T91, HT-9, EP 823) are candidate materials for future liquid lead or lead bismuth eutectic (LBE) cooled nuclear reactors. To understand the corrosion of these materials in LBE, samples of each material were exposed at 535 °C for 600 h and 200 h at an oxygen content of 10−6 wt%. After the corrosion tests, the samples were analyzed using SEM, WDX and nano-indentation in cross section. Multi-layered oxide scales were found on the sample surfaces. The compositions of these oxide layers are not entirely in agreement with the literature. The nano-indentation results showed that the E-modulus and hardness of the oxide layers are significantly lower than the values for dense bulk oxide materials. It is assumed that the low values stem from high porosity in the oxide layers. Comparison with in-air oxidized steels show that the E-modulus decreases with increasing oxide layer thickness.  相似文献   

15.
Nitrogen alloyed low carbon grade 316L(N) stainless steel (SS) is a major structural material for high temperature structural components of sodium cooled fast reactors. With a view to significantly enhance the high temperature mechanical properties of 316L(N) SS and thereby increase the design life of structural components from 40 years to 60 years, the influence of nitrogen content on the tensile and creep properties of this steel has been investigated. Four heats of 316LN SS with 0.07, 0.11, 0.14, and 0.22 wt.% nitrogen were used in this investigation. Tensile tests were carried out at various temperatures between room temperature and 850 °C. Creep tests were carried out at 650 °C at various stress levels in the range of 140-225 MPa. The maximum rupture life in these tests was 16,000 h. The tensile and creep data were analysed according to RCC-MR nuclear code procedures and the design curves have been generated. The tensile and creep strength of 316L(N) SS have been found to improve significantly by increasing the nitrogen content.  相似文献   

16.
Lead and lead-bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead-bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF®, PM2000, MA956) were investigated by exposing to stagnant LBE environments at 500 °C and 550 °C for up to 500 h. After exposures, the thickness and chemistry of the oxide layer on the specimens were analyzed by scanning electron microscopy, scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. As a result, the oxide characteristics and the corrosion resistance were compared. In this study, it was shown that the corrosion resistance of FeCrAl ODS steels (PM2000, MA956) are superior to that of FeCrAl ferritic steel (Kanthal-AF®) in higher temperature LBE.  相似文献   

17.
Ti3SiC2 is considered as a possible pump material for heavy liquid metal (HLM) cooled nuclear systems because it resists oxygen and has high temperature strength. Therefore the material was tested in stagnant lead and lead bismuth containing oxygen at temperatures between 550 and 750 °C up to 4000 h in the Karlsruher COSTA facilities. Two different oxygen concentrations (10−6 and 10−8 wt%) were chosen. During the exposure a thin TiOx-layer was formed at the surface of the specimens. No dissolution attack was observed under these conditions.  相似文献   

18.
This research project deals with the feasibility studies concerning the construction of an hybrid reactor for the transmutation of long-lived radioactive wastes. In this context, the liquid lead-bismuth eutectic (LBE) is considered to be a good candidate for the spallation target material needed for the neutrons production necessary to the transmutation. In this hybrid reactor, the LBE, which is enclosed in a T91 (Fe-9%Cr) steel container, can induce corrosion concerns. If the oxygen content dissolved in Pb-Bi is higher than the needed content for magnetite formation, corrosion proceeds by oxidation of the steel. Previously, specific results were reported, obtained in stagnant liquid LBE at 470 °C. An analytical model taking into account the oxide layer structure has been carried out. It involves iron, oxygen and chromium bulk diffusion and diffusion via preferential paths such as liquid lead-bismuth nano-channels incorporated in the oxide layer structure and grain boundaries. In this paper, experimental results on corrosion kinetics, obtained at different temperatures with different percentages of lead in the lead-bismuth alloy, are presented. The model, adapted to the different experimental conditions, is compared to these kinetics and to experimental points coming from the literature at different temperatures in LBE, in pure lead and in pure bismuth.  相似文献   

19.
Low cycle fatigue tests in air and LBE containing 10−6 wt% dissolved oxygen were conducted with T91 steel at 550 °C. T91 was employed in two modifications, one in the as-received state, and the other after alloying FeCrAlY into the surface by pulsed electron beam treatment (GESA process). Tests were carried out with symmetrical cycling (R = −1) with a frequency of 0.5 Hz and a total elongation Δεt/2 between 0.3% and 2%. No influence from LBE on fatigue could be detected. Results in air and LBE showed similar behaviour. Additionally, no difference was observed between surface treated and none treated T91 specimens.  相似文献   

20.
The corrosion behaviours of austenitic steel AISI 316L and martensitic steel T91 were investigated in flowing lead-bismuth eutectic (LBE) at 400 °C. The tests were performed in the LECOR and CHEOPE III loops, which stood for the low oxygen concentration and high oxygen concentration in LBE, respectively. The results obtained shows that steels were affected by dissolution at the condition of low oxygen concentration (C[O2] = 10−8-10−10 wt%) and were oxidized at the condition of high oxygen concentration (C[O2] = 10−5-10−6 wt%). The oxide layers detected are able to protect the steels from dissolution in LBE. Under the test condition adopted, the austenitic steel behaved more resistant to corrosion induced by LBE than the martensitic steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号