首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Random and block copolymerizations of L ‐ or D ‐lactide with ε‐caprolactone (CL) were performed with a novel anionic initiator, (C5Me5)2SmMe(THF), and they resulted in partial epimerization, generating D ,L ‐ or meso‐lactide polymers with enhanced biodegradability. A blend of PLLA‐r‐PCL [82/18; PLLA = poly(L ‐LA) and PCL = poly(ε‐caprolactone)] and PDLA‐r‐PCL [79/21; PDLA = poly(D ‐LA)] prepared by the solution‐casting method generated a stereocomplex, the melting temperature of which was about 40 °C higher than that of the nonblended copolymers. A blend of PLLA‐b‐PCL (85/15) and PDLA‐b‐PCL (82/18) showed a lower elongation at break and a remarkably higher tensile modulus than stereocomplexes of PLLA‐r‐PCL/PDLA‐r‐PCL and PLLA/PDLA. The biodegradability of a blend of PLLA‐r‐PCL (65/35) and PDLA‐r‐PCL (66/34) with proteinase K was higher than that of PLLA‐b‐PCL (47/53) and PDLA‐b‐PCL (45/55), the degradability of which was higher than that of a PLLA/PDLA blend. A blend film of PLLA‐r‐PDLLA (69/31)/PDLA‐r‐PDLLA (68/32) exhibited higher degradability than a film of PLLA/PDLLA [PDLLA = poly(D ,L ‐LA)]. A stereocomplex of PLLA‐r‐PCL‐r‐PDMO [80/18/2; PDMO = poly(L ‐3,D ,L ‐6‐dimethyl‐2,5‐morpholinedion)] with PDLA‐r‐PCL‐r‐PDMO (81/17/2) showed higher degradability than PLLA‐r‐PDMO (98/2)/PDLA‐r‐PDMO (98/2) and PLLA‐r‐PCL (82/18)/PDLA‐r‐PCL (79/21) blends. The tensile modulus of a blend of PLLA‐r‐PCL‐r‐PDMO and PDLA‐r‐PCL‐r‐PDMO was much higher than that of a blend of PLLA‐r‐PDMO and PDLA‐r‐PDMO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 438–454, 2005  相似文献   

2.
The zone‐drawing (ZD) method was applied three times to the melt‐spun poly(L ‐lactic acid) (PLLA) fibers of low molecular weight (Mv = 13,100) at different temperatures under various tensions. The mechanical properties and superstructure of the ZD fibers were investigated. The resulting ZD‐3 fiber had a draw ratio of 10.5, birefringence of 37.31 × 10−3, and crystallinity of 37%, while an orientation factor of crystallites remarkably increased to 0.985 by the ZD‐1. The Young's modulus and tensile strength of the ZD‐3 fiber respectively attained 9.1 GPa and 275 MPa, and the dynamic storage modulus was 10.4 GPa at room temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 991–996, 1999  相似文献   

3.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

4.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

5.
A multiblock copoly(ester–ether) consisting of poly(l ‐lactic acid) (PLLA) and poly(oxypropylene‐co‐oxyethylene) (PN) was prepared and characterized. Preparation was done via the solution polycondensation of a thermal oligocondensate of l ‐lactic acid, a commercially available telechelic polyether (PN: Pluronic‐F68), and dodecanedioic acid as a carboxyl/hydroxyl adjusting agent. When stannous oxide was used as the catalyst, the molecular weight of the resultant PLLA/PN block copolymers became very high (even with a high PN content) under optimized reaction conditions. The refluxing of diphenyl ether (solvent) at reduced pressure allowed the efficient removal of the condensed water from the reaction system and the feed‐back of the intermediately formed l ‐lactide at the same time in order to successfully bring about a high degree of condensation. The copolymer films obtained by solution casting became more flexible with the increasing PN content as soft segments. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1513–1521, 1999  相似文献   

6.
A blend of two biodegradable and semi‐crystalline polymers, poly (L‐lactic acid) (PLLA; 70 wt%) and poly (butylene succinate‐co‐L‐lactate) (PBSL; 30 wt%), was prepared in the presence of various polyethylene oxide‐polypropylene oxide‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer contents (0.5, 1, 2 wt%). Mechanical, thermal properties, and Fourier transform infrared (FTIR) analysis of the blends were investigated. It was found that the addition of copolymer to PLLA/PBSL improved the fracture toughness of the blends as shown by mode I fracture energies. It was supported by morphological analysis where the brittle deformation behavior of PLLA changed to ductile deformation with the presence of elongated fibril structure in the blend with copolymer system. The glass transition temperature (Tg), melting temperature (Tm) of PLLA, and PBSL shift‐closed together indicated that some compatibility exists in the blends. In short, PEO‐PPO‐PEO could be used as compatibilizer to improve the toughness and compatibility of the PLLA/PBSL blends. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(L ‐lactic acid) (PLLA) filament fibers were prepared by one‐step melt spinning process and the effects of variations in take‐up speed on their thermal properties, mechanical properties, and crystalline structures were investigated. Differential scanning calorimetry (DSC) results revealed that the PLLA fibers showed multiple melting peaks and that the melting peak appearing at a lower temperature moved lower while that at a higher temperature moved higher with increasing take‐up speed. The glass transition temperature (Tg) obtained from dynamic mechanical analysis (DMA) increased with increasing take‐up speed. The tenacity increased and the boiling water shrinkage (BWS) decreased with increasing take‐up speed. However, these mechanical and thermal properties were stabilized at take‐up speeds over 3500 m/min. The melt‐spun PLLA fibers of this study showed an α‐form crystal structure which was not affected by the take‐up speed. The change in the tendency of the thermal and mechanical properties at around 3500 m/min did not appear to result from the change in crystal form but rather from the change in crystallite size and crystallite orientation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Phosphorylated graphene oxide (PGO) was prepared by using phosphoric acid as functional reagent, and PGO was grafted with poly(L‐lactide) (PGO‐PLLA) by ring‐opening polymerization of L‐lactide as monomer under nano‐ZnO catalyst. The results of the orthogonal analysis showed the optimum reaction conditions to be as follows: the reaction temperature of 170°C, reaction time of 14 hours, the mass ratio of PGO of 10 wt%, and the mass of nano‐ZnO of 1 wt%. PGO‐PLLA was characterized by fourier transform infrared spectroscopy, gel permeation chromatography, and X‐ray photoelectron spectroscopy, which demonstrated that the PLLA molecular chains were successfully grafted onto the surface of PGO. Poly (lactic acid)/PGO‐PLLA nanocomposites (PLA/PGO‐PLLA) were prepared by melt intercalation. Mechanical test and fracture scanning electron microscopy showed that PGO‐PLLA (0.3 wt%) improved impact strength of PLA by 52.19%, which resulted in ductile fractures surface of PLA/PGO‐PLLA. Microcalorimetry and thermal degradation kinetics proved that PGO‐PLLA improved the thermal stability of PLA. Polarized optical microscopy and differential scanning calorimetry confirmed that PGO‐PLLA increased crystallization rate and spherulite kernel density of PLA, and crystallinity of PLA/PGO‐PLLA reached to 22.05%. Rheological behavior proved that PGO‐PLLA increased the self‐lubricity of PLA. Enzymatic degradation results illustrated that PGO‐PLLA had some inhibition for the biodegradability of PLA based nanocomposites.  相似文献   

9.
In this study, a novel drug‐carrying micelle composed of methoxy poly(ethylene glycol) (mPEG)‐b‐poly(L‐lactic acid) (PLLA) with gas‐forming carbonate linkage was fabricated. Here, the gas‐forming carbonate linkage was formed by the chemical coupling of the terminal hydroxyl group of the PLLA block and benzyl chloroformate (BC). mPEG‐b‐PLLA‐BC was self‐organized in aqueous solution: the PEG block on the hydrophilic outer shell and the PLLA‐BC block in the hydrophoboic innor core. The cleavage of carbonate linkage by hydrolysis and formation of carbon dioxide nanobubbles in the micellar core enabled an accelerated release of the encapsulated anticancer drug (doxorubicin: DOX) from the mPEG‐b‐PLLA‐BC micelles. The amount of drug (DOX) released from the mPEG‐b‐PLLA‐BC micelle was higher than that from the conventional mPEG‐b‐PLLA micelle, which allowed for increased in vitro toxicity against KB tumor cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, novel biodegradable materials were successfully generated, which have excellent mechanical properties in air during usage and storage, but whose structure easily disintegrates when immersed in water. The materials were prepared by melt blending poly(L ‐lactic acid) (PLLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) with a small amount of oligomeric poly(aspartic acid‐co‐lactide) (PAL) as a degradation accelerator. The degradation behavior of the blends was investigated by immersing the blend films in phosphate‐buffered saline (pH = 7.3) at 40 °C. It was shown that the PAL content and composition significantly affected morphology, mechanical properties, and hydrolysis rate of the blends. It was observed that the blends containing PAL with higher molar ratios of L ‐lactyl [LA]/[Asp] had smaller PBAT domain size, showing better mechanical properties when compared with those containing PAL with lower molar ratios of [LA]/[Asp]. The degradation rates of both PLLA and PBAT components in the ternary blends simultaneously became higher for the blends containing PAL with higher molar ratios of [LA]/[Asp]. It was confirmed that the PLLA component and its decomposed materials efficiently catalyze the hydrolytic degradation of the PBAT component, but by contrast that the PBAT component and its decomposed materials do not catalyze the hydrolytic degradation of the PLLA component in the blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

11.
In this study, the thermal and mechanical properties of biodegradable poly(L ‐lactic acid) (PLA) were improved by reacting with 4,4‐methylene diphenyl diisocyanate (MDI). The resulting PLA samples were characterized with Fourier transformation infrared spectrometer (FT‐IR). The glass transition (Tg) and decomposing (Td) temperature of the resulting products were measured using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The tensile properties were also measured with a tensile tester. The results show that when the molar ratio of ? NCO to ? OH was 2:1, the Tg value can be increased to 64°C from the original 55°C, and the tensile strength increased from 4.9 to 5.8 MPa. This demonstrated that by reacting PLA with MDI at an appropriate portion, both the thermal and mechanical performance of PLA can be increased. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

13.
Effects of carbon nanotubes (CNT) on the dynamic mechanical property, thermal property, and crystal structure of poly(L ‐lactic acid) (PLLA) were investigated. Dynamic mechanical analysis (DMA) found that CNT via grafting modification with PLLA (CNT‐g‐PLLA) could result in effective reinforcing effects. Tan δ of DMA found that CNT‐g‐PLLA was compatible with the PLLA matrix, giving a single Tg of the composite with a higher CNT‐g‐PLLA loading giving a higher Tg of the composite. Wide angle X‐ray diffraction (WAXD) data demonstrated that CNT could assist the disorder‐to‐order (α′‐to‐α) transition in PLLA crystals but did not lead to a more compact chain packing of the crystal lattice in PLLA composites than in pure PLLA. The equilibrium melting temperature (T) obtained from Hoffman‐Weeks plots were found to increase with increasing CNT‐g‐PLLA content. Small angle X‐ray scattering data revealed that thicknesses of crystal layer and amorphous layer of PLLA both decreased with increasing CNT contents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 145–152, 2010  相似文献   

14.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The elastic constants of poly(L ‐lactic acid) (PLLA) crystals are reported on the basis of a commercial software package and the published crystal structure of the α form. A chain modulus of 36 GPa and a shear modulus of 3 GPa have been obtained for cylindrically symmetric aggregates of perfectly oriented crystals. The helical conformation of the PLLA molecule reduces the stiffness in the chain axis direction because bond rotation plays a significant role in the deformation. X‐ray crystal strain measurements suggest that shear of the α crystal parallel to the helix axis is the easiest mode of deformation, in agreement with the expectations obtained from the low shear modulus of 3 GPa obtained from the theoretical calculations. A combination of small‐ and wide‐angle X‐ray scattering, differential scanning calorimetry, dynamic mechanical thermal analysis, and shrinkage measurements has been used to characterize the structure that develops and the crystal transformation that occurs during fiber processing. The structure that develops during processing very much depends on the crystal transformation, and a structural model is proposed for fibers at different degrees of plastic deformation. The transformation of the α crystal into the β form and vice versa is governed primarily by shear along the helix axis because the chains must shear past each other during the crystal transformation, disrupting the lamellar packing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 892–902, 2007  相似文献   

16.
Coelectrospun polylactide(PLA)/gelatin (GE) composite fibrous matrixes have been identified to exhibit much improved performances compared to the respective components; however, the reasons for their water contact angles decreasing to zero at proper PLA/GE ratios remain unclear. To get a deep understanding of the phenomenon, PLA and GE were coelectrospun with different PLA/GE ratios in this study. Although the resulting composite fibers were homogeneous in appearance, they were detected different microscopic structures by transmission electron mircroscope (TEM) and via morphological observations after selective removal of either PLA or GE component. Together with the results of degradation study in phosphate buffered solution, a kind of cocontinuous phase separation microstructure could be identified for the PLA(50 wt%)/GE(50 wt%) composite fibers, which also showed the water contact angle of 0°. This value was far lower than those of electrospun PLA (~123°) and GE (~42°) fibrous matrixes. The X‐ray photoelectron spectrometry (XPS) data revealed that the polar side groups of protein macromolecules have moved toward composite fiber surface with solvent evaporation during electrospinning, due to the hydrophobic interaction between PLA and GE. Then the excellent hydrophilicity of PLA(50 wt%)/GE(50 wt%) composite fibers could be suggested as the consequence of: (1) the cocontinuous phase separation structure could provide more interface and void for water molecules penetrating; and (2) the accumulation of polar groups on composite fiber surface significantly increased the surface wettability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA.  相似文献   

18.
In the present work, a facile and environmental method was developed to fabricate the novel functionalized MoS2 hybrid. Firstly, MoS2 nanosheets were coated with polydopamine (PDA) through the self‐polymerization of dopamine (MoS2‐PDA) in a buffer solution. Then the decoration of Ni(OH)2 on the MoS2‐PDA was synthesized because of the strong affinity of Ni2+ with hydroxyl groups in PDA. Finally, the as‐synthesized MoS2‐PDA@Ni(OH)2 was introduced into poly(lactic acid) (PLA) matrix to explore flame retardancy, thermal stability, and crystalline property of the composites. As confirmed by X‐ray diffraction (XRD), Fourier‐transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), the MoS2 nanosheets were dually modified with PDA and Ni(OH)2 without destroying the original structures. The thermal degradation of PLA with MoS2‐PDA@Ni(OH)2 generated a notably higher yield of char. Moreover, the crystallization rate of composites is higher than neat PLA. The cone calorimeter test revealed that the introduction of 3% MoS2‐PDA@Ni(OH)2 resulted in lower Peak Heat Release Rate (PHRR) (decreased by 21.7%). Thus, the research provided an innovative functionalization method for manufacturing PLA composites with high performances.  相似文献   

19.
Aliphatic polyesters and polyphosphoesters (PPEs) have received much interest in medical applications due to their favorable biocompatibility and biodegradability. In this work, novel amphiphilic triblock copolymers of PPE and poly(L ‐lactic acid) (PLLA) with various compositions were synthesized and characterized. The blocky structure was confirmed by GPC analyses. These triblock copolymers formed micelles composed of hydrophobic PLLA core and hydrophilic PPE shell in aqueous solution. Critical micellization concentrations of these triblock copolymers were related to the polymer compositions. Incubation of micelles at neutral pH followed by GPC analyses revealed that these polymer micelles were hydrolysized and resulted in decreased molecular weights and small oligomers, whereas its degradation in basic and acid mediums was accelerated. MTT assay also demonstrated the biocompatibility against HEK293 cells. These biodegradable polymers are potential as drug carriers for biomedical application. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6425–6434, 2008  相似文献   

20.
Honeycomb monolith structured porous poly (L‐lactic acid, PLA) was simply fabricated by employing a unidirectional freeze‐casting technique. Dimethyl sulfoxide (DMSO) was used as a solvent for PLA, and the solution was unidirectionally frozen. The DMSO was nucleated in the solution and was grown in the freezing direction. The PLA was solidified and structured with the DMSO crystal as a template. Then DMSO was leached by water, ethanol, or the mixture of them, and subsequently the porous PLA was dried by oven. It was found that the freeze‐casting protocol can significantly influence the morphological features such as the tube diameter and wall thickness of tube can be tuned by varying of PLA concentration, freezing temperature, and the nature of leaching solvent. Because DMSO has a special solubility of a number of polymers, this method may be a general way for designing and preparing aligned porous materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号