首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A computational homogenization scheme is developed to model heterogeneous hyperelastic materials undergoing large deformations. The homogenization scheme is based on a so‐called computational continua formulation in which the macro‐scale model is assumed to consist of disjoint unit cells. This formulation adds no higher‐order boundary conditions and extra degrees of freedom to the problem. A computational procedure is presented to calculate the macroscopic quantities from the solution of the representative volume element boundary value problem. The proposed homogenization scheme is verified against a direct numerical simulation. It is also shown that the computational cost of the proposed model is lower than that of standard homogenization schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A gradient‐enhanced computational homogenization procedure, that allows for the modelling of microstructural size effects, is proposed within a general non‐linear framework. In this approach the macroscopic deformation gradient tensor and its gradient are imposed on a microstructural representative volume element (RVE). This enables us to incorporate the microstructural size and to account for non‐uniform macroscopic deformation fields within the microstructural cell. Every microstructural constituent is modelled as a classical continuum and the RVE problem is formulated in terms of standard equilibrium and boundary conditions. From the solution of the microstructural boundary value problem, the macroscopic stress tensor and the higher‐order stress tensor are derived based on an extension of the Hill–Mandel condition. This automatically delivers the microstructurally based constitutive response of the higher‐order macro continuum and deals with the microstructural size in a natural way. Several examples illustrate the approach, particularly the microstructural size effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A class of random composite materials with statistically inhomogeneous microstructure, for example, functionally graded materials is considered in this paper. The microstructures inside a component are gradually varying in the statistical sense. In view of this particularity, a novel statistical second‐order two‐scale (SSOTS) method is presented to predict the mechanical properties, including stiffness, and elastic limit. To develop this method, the microstructures of statistically homogeneous, and inhomogeneous materials are represented. In addition the SSOTS formulas are derived based on normalized cell depending on the position variables by a constructing way, and the algorithm procedure is described. The mechanical properties of the different inhomogeneous materials are evaluated. The numerical results are compared with the experimental findings. It shows that the SSTOS method is effective. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In the first part of this contribution, a brief theoretical revision of the mechanical and variational foundations of a Failure‐Oriented Multiscale Formulation devised for modeling failure in heterogeneous materials is described. The proposed model considers two well separated physical length scales, namely: (i) the macroscale where nucleation and evolution of a cohesive surface is considered as a medium to characterize the degradation phenomenon occurring at the lower length scale, and (ii) the microscale where some mechanical processes that lead to the material failure are taking place, such as strain localization, damage, shear band formation, and so on. These processes are modeled using the concept of Representative Volume Element (RVE). On the macroscale, the traction separation response, characterizing the mechanical behavior of the cohesive interface, is a result of the failure processes simulated in the microscale. The traction separation response is obtained by a particular homogenization technique applied on specific RVE sub‐domains. Standard, as well as, Non‐Standard boundary conditions are consistently derived in order to preserve objectivity of the homogenized response with respect to the micro‐cell size. In the second part of the paper, and as an original contribution, the detailed numerical implementation of the two‐scale model based on the finite element method is presented. Special attention is devoted to the topics, which are distinctive of the Failure‐Oriented Multiscale Formulation, such as: (i) the finite element technologies adopted in each scale along with their corresponding algorithmic expressions, (ii) the generalized treatment given to the kinematical boundary conditions in the RVE, and (iii) how these kinematical restrictions affect the capturing of macroscopic material instability modes and the posterior evolution of failure at the RVE level. Finally, a set of numerical simulations is performed in order to show the potentialities of the proposed methodology, as well as, to compare and validate the numerical solutions furnished by the two‐scale model with respect to a direct numerical simulation approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A multi‐scale cohesive numerical framework is proposed to simulate the failure of heterogeneous adhesively bonded systems. This multi‐scale scheme is based on Hill's variational principle of energy equivalence between the higher and lower level scales. It provides an easy way to obtain accurate homogenized macroscopic properties while capturing the physics of failure processes at the micro‐scale in sufficient detail. We use an isotropic rate‐dependent damage model to mimic the failure response of the constituents of heterogeneous adhesives. The finite element method is used to solve the equilibrium equation at each scale. A nested iterative scheme inspired by the return mapping algorithm used in computational inelasticity is implemented. We propose a computationally attractive technique to couple the macro‐ and micro‐scales for rate‐dependent constitutive laws. We introduce an adhesive patch test to study the numerical performance, including spatial and temporal convergence of the multi‐scale scheme. We compare the solution of the multi‐scale cohesive scheme with a direct numerical simulation. Finally, we solve mode I and mode II fracture problems to demonstrate failure at the macro‐scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The two‐scale asymptotic (TSA) expressions of the increment of temperature and the displacement for the structure of composite materials with small periodic configuration under coupled thermoelasticity condition are derived formally in this paper, especially, the two‐scale coupled relation between the increment of temperature and the displacements are set up. Then the approximate solutions and their error estimations are presented, and the multi‐scale finite element algorithm corresponding to TSA is described. Finally, simple numerical results evaluated by multi‐scale FE computation are shown. They demonstrate that the basic configuration and the increment of temperature strongly influence upon local strains and local stresses inside basic cell. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an advanced failure surface propagation concept based on the marching cubes algorithm initially proposed in the field of computer graphics and applies it to the embedded finite element method. When modeling three‐dimensional (3D) solids at failure, the propagation of the failure surface representing a crack or shear band should not exhibit a strong sensitivity to the details of the finite element discretization. This results in the need for a propagation of the discrete failure zone through the individual finite elements, which is possible for finite elements with embedded strong discontinuities. Whereas for two‐dimensional calculations the failure zone propagation location is easily predicted by the maximal principal stress direction, more advanced strategies are needed to achieve a smooth failure surface in 3D simulations. An example for such method is the global tracking algorithm, which predicts the crack path by a scalar level set function computed on the basis of the solution of a simplified heat conduction like problem. Its prediction may though lead to various scenarios on how the failure surface may propagate through the individual finite elements. In particular, for a hexahedral eight‐node finite element, 256 such cases exist. To capture all those possibilities, the marching cubes algorithm is combined with the global tracking algorithm and the finite elements with embedded strong discontinuities in this work. In addition, because many of the possible cases result in non‐planar failure surfaces within a single finite element and because the local quantities used to describe the kinematics of the embedded strong discontinuities are physically meaningful in a strict sense only for planar failure surfaces, a remedy for such scenarios is proposed. Various 3D failure propagation simulations outline the performance of the proposed concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Problems involving reaction and species diffusion involve field and flux jumps at a moving reaction front. In multi‐scale problems such as carbon fiber composite oxidation, these effects need to be tracked at the microscopic scale of individual carbon fibers. A multi‐scale model is derived in this paper for predicting species distribution in such problems using a fully coupled multi‐scale homogenization approach. The homogenized fluxes from the micro‐scale are derived using Hill's macro‐homogeneity condition accounting for both flux jumps and species density field jumps at the reacting interface in the micro‐scale unit cell. At the macro‐scale, the competition between the transport of reacting species (oxygen) and the reaction product (carbon dioxide) is modeled using homogenized mass conservation equations. The moving reaction front in carbon fibers at the micro‐scale is tracked using level set method and an adaptive meshing strategy. The macroscopic weight loss of the composite when exposed to oxygen is simulated as a function of time using a coupled finite element methodology at various locations in a validated macroscopic model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A stochastic thermo‐mechanical model for strength prediction of concrete is developed, based on the two‐scale asymptotic expressions, which involves both the macroscale and the mesoscale of concrete materials. The mesoscale of concrete is characterized by a periodic layout of unit cells of matrix‐aggregate composite materials, consisting of randomly distributed aggregate grains and cement matrix. The stochastic second‐order and two‐scale computational formulae are proposed in detail, and the maximum normal stress is assumed as the strength criterion for the aggregates, and the cement paste, in view of their brittle characteristics. Numerical results for the strength of concrete obtained from the proposed model are compared with those from known experiments. The comparison shows that the proposed method is validated for strength prediction of concrete. The proposed thermo‐mechanical model is also employed to investigate the influence of different volume fraction of the aggregates on the strength of concrete. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
As part of the ongoing research within the field of computational analysis for the coupled electro‐magneto‐mechanical response of smart materials, the problem of linearised electrostriction is revisited and analysed for the first time using the framework of hp‐finite elements. The governing equations modelling the physics of the dielectric are suitably modified by introducing a new total Cauchy stress tensor (A. Dorfmann and R.W. Ogden. Nonlinear electroelasticity. Acta Mechanica, 174:167–183, 2005), which includes the electrostrictive effect and a staggered partitioned scheme for the numerical solution of the coupling phenomena. With the purpose of benchmarking numerical results, the problem of an infinite electrostrictive plate with a circular/elliptical dielectric insert is revisited. The presented analytical solution is based on the theoretical framework for two‐dimensional electrostriction proposed by Knops (R.J. Knops. Two‐dimensional electrostriction. Quarterly Journal of Mechanics and Applied Mathematics, 16:377–388, 1963) and uses classical techniques of complex variable analysis. Our presentation, to the best of our knowledge, provides the first correct closed form expression for the solution to the infinite electrostrictive plate with a circular/elliptical dielectric insert, correcting the errors made in previous presentations of this problem. We use this analytical solution to assess the accuracy, efficiency and robustness of the hp‐formulation in the case of nearly incompressible electrostrictive materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The asymptotic expansion homogenization (AEH) approach has found wide acceptance for the study of heterogeneous structures due to its ability to account for multi‐scale features. The emphasis of the present study is to develop consistent AEH numerical formulations to address elasto‐plastic material response of structures subjected to short‐duration transient loading. A second‐order accurate velocity‐based explicit time integration method, in conjunction with the AEH approach, is currently developed that accounts for large deformation non‐linear material response. The approach is verified under degenerate homogeneous conditions using existing experimental data in the literature and its ability to account for heterogeneous conditions is demonstrated for a number of test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper extends the capabilities of previous BST and EBST rotation‐free thin shell elements to the analysis of kinked and branching surfaces. The computation of the curvature tensor is first redefined in terms of the angle change between the normals at the adjacent elements. This allows to deal with arbitrary large angles between adjacent elements and to treat kinked surfaces. A relative stiffness between elements is introduced to consider non‐homogeneous surfaces. This idea is latter generalized to deal with branching shells. Several linear and non‐linear examples are presented showing that the formulation leads to the correct results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a two‐scale approximation of the Schur complement of a subdomain's stiffness matrix, obtained by combining local (i.e. element strips) and global (i.e. homogenized) contributions. This approximation is used in the context of a coupling strategy that is designed to embed local plasticity and geometric details into a small region of a large linear elastic structure; the strategy consists in creating a local model that contains the desired features of the concerned region and then substituting it into the global problem by the means of a non‐intrusive solver coupling technique adapted from domain decomposition methods. Using the two‐scale approximation of the Schur complement as a Robin condition on the local model enables to reach high efficiency. Examples include a large 3D problem provided by our industrial partner Snecma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes an algorithm for the synthesis/optimization of microstructures based on an exact formula for the topological derivative of the macroscopic elasticity tensor and a level set domain representation. The macroscopic elasticity tensor is estimated by a standard multi‐scale constitutive theory where the strain and stress tensors are volume averages of their microscopic counterparts over a representative volume element. The algorithm is of simple computational implementation. In particular, it does not require artificial algorithmic parameters or strategies. This is in sharp contrast with existing microstructural optimization procedures and follows as a natural consequence of the use of the topological derivative concept. This concept provides the correct mathematical framework to treat topology changes such as those characterizing microstuctural optimization problems. The effectiveness of the proposed methodology is illustrated in a set of finite element‐based numerical examples.Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the present research is to check the capability of the equivalent material concept (EMC) combined with the J‐integral failure criterion, called EMC‐J criterion, in predicting the load‐carrying capacity (LCC) of U‐notched ductile aluminium plates subjected to tension by considering the 2 moderate and large‐scale yielding regimes. For this purpose, first, a set of experimental results on LCC of 2 groups of thin U‐notched rectangular plates made of Al 7075‐T6 and Al 6061‐T6 are gathered from the recent literature. Then, because the Al 7075‐T6 and Al 6061‐T6 plates have ductile behaviour, EMC is employed to avoid performing elastic‐plastic failure analysis for LCC predictions. Up to now, different failure models in the context of the linear‐elastic notch fracture mechanics have been successfully utilized in combination with EMC for ductile failure prediction of notched members. However, this is the first time in this research that J‐integral, as a well‐known brittle failure criterion, is linked to EMC for predicting LCC of the U‐notched rectangular aluminium plates. Finally, it is shown that EMC‐J criterion can predict well the experimental results of tensile LCC.  相似文献   

19.
Numerical schemes for the approximative solution of advection–diffusion–reaction equations are often flawed because of spurious oscillations, caused by steep gradients or dominant advection or reaction. In addition, for strong coupled nonlinear processes, which may be described by a set of hyperbolic PDEs, established time stepping schemes lack either accuracy or stability to provide a reliable solution. In this contribution, an advanced numerical scheme for this class of problems is suggested by combining sophisticated stabilization techniques, namely the finite calculus (FIC‐FEM) scheme introduced by Oñate et al. with time‐discontinuous Galerkin (TDG) methods. Whereas the former one provides a stabilization technique for the numerical treatment of steep gradients for advection‐dominated problems, the latter ensures reliable solutions with regard to the temporal evolution. A brief theoretical outline on the superior behavior of both approaches will be presented and underlined with related computational tests. The performance of the suggested FIC‐TDG finite element approach will be discussed exemplarily on a bioregulatory model for bone fracture healing proposed by Geris et al., which consists of at least 12 coupled hyperbolic evolution equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a new method for computing eigenvalue and eigenvector derivatives of asymmetric non‐conservative systems with distinct eigenvalues is presented. Several approaches have been proposed for eigenderivative analysis of systems with asymmetric and non‐positive‐definite mass, damping and stiffness matrices. The proposed formulation that is developed by combining the modal and algebraic methods neither have the complications of modal methods in calculating the complex left and right eigenvector derivatives nor suffer from numerical instability problems usually associated with algebraic methods. The method is applied to a functionally graded material (FGM) plate actively controlled by piezoelectric sensor/actuators. In this system, the feedback signal applied to each actuator patch is implemented as a function of the electric potential in its corresponding sensor patch. The use of this closed‐loop controlling system leads to a non‐self‐adjoint system with complex eigenvalues and eigenvectors. A finite element model is developed for static and dynamic analysis of closed‐loop controlled FGM plate. The first‐ and second‐order approximations of Taylor expansion are used to estimate the corresponding changes in the plate modal properties due to change in design parameters (the displacement feedback gains and the piezoelectric layer thickness in each S/A pair). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号