首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
维系江湖关系的重要基础是江湖之间的物质通量,而江湖之间物质通量的核心内容是水的通量.规划中的鄱阳湖水利枢纽工程,以"一湖清水"为建设目标,坚持"江湖两利"的原则,按"调枯不控洪"方式运行.目前,国内学者对拟建的鄱阳湖水利枢纽工程可能导致湖泊影响方面的研究较多,但对该工程能否实现或维持"江湖两利"方面的研究较少.本文采用二维水动力模型,针对拟建的鄱阳湖水利枢纽工程和规划中的水位调度方案,分别从湖泊丰水期和枯水期两个时段,选择鄱阳湖丰、平、枯3种典型年型,在无枢纽与有枢纽两种情景模拟的基础上,定量分析丰、平、枯3种典型年枢纽工程的水位调度方案对长江干流流量的可能影响.模拟结果表明:在一个鄱阳湖水利枢纽工程水位调度周期中,无枢纽状态与有枢纽情景下湖泊外排到长江干流的径流总量差异很小,从模拟的年份来看,有枢纽外排减少量在0.2%~0.7%之间变化,基本维持了有枢纽与无枢纽状态下的水量平衡,但在一定程度上改变了湖泊外排长江干流水量的分配时间,使不同年型丰水期的湖泊外排水量有所减少,而在湖泊和长江低枯水期,对长江流量则有一定的增排作用,且增排效果为枯水年型平水年型丰水年型,不同年型的增排比例在2.1%~17.0%之间变化;在丰水期湖泊水位偏低,且枢纽位置的实际水位严重不足9 m的年型情况下,按照枢纽工程的水位调度方案要在9月15日将湖泊水位提升至14~15 m是难于实现的,现有的枢纽工程调度方案在这种情况下缺乏可操作性,有进一步细化和优化的空间.  相似文献   

2.
鄱阳湖水利枢纽工程对鄱阳湖水文水动力影响的模拟   总被引:1,自引:4,他引:1  
水流情势变化是河湖生态系统演变最主要的驱动力,拟建的鄱阳湖水利枢纽工程对鄱阳湖水文水动力会产生何种影响是一个值得深入研究的问题.本研究基于EFDC模型构建了鄱阳湖水动力的二维模型,并按照规划中的鄱阳湖水利枢纽工程调度方案,通过丰平枯典型年份的情景模拟,探讨了鄱阳湖水利枢纽工程运行调度方案对湖泊水文水动力的可能影响.模拟结果表明:不同情景年型鄱阳湖水利枢纽工程低枯水位生态调节期(12月1日至3月底4月初)中11 m控制水位对该时期湖泊平均水位的抬升程度明显,2010年(丰水年)11 m控制水位对枯水期湖泊平均水位的最大抬升为2.59 m,2000年(平水年)枯水期湖泊的平均水位最大抬升为2.68 m,而2004年(枯水年)枯水期湖泊的平均水位最大抬升为4.35 m.枯水期水位的抬升,使不同年型不同湖区的枯水期平均流速、最大流速和最小流速都有不同程度的减小,其中以入江河道为最,2000年和2010年枯水期平均流速降幅在44%以上,2004年(枯水年)枯水期的平均降速范围在50%以上,而对两大保护区的影响则较小.对流场格局的影响方面,主要表现在有枢纽时由于低枯水期的11 m水位控制,棠荫以北尤其是入江河道的流场与无枢纽时的流场表现出明显的不同;棠荫以南的湖区,当赣江中支和赣江南支的来水较大时,在棠荫附近及松门山以南的湖区会呈现出较大的水面.同时由于枯水期的水位抬升和流速减小,水利枢纽工程对湖泊换水周期的作用明显,不同年型的换水周期都受到不同程度的影响,2004年枢纽控水过程使控水期间的平均换水周期增加了5.6 d,影响程度达26.1%;模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对鄱阳湖水文水动力的影响程度,为进一步定量分析鄱阳湖水利枢纽工程对湖泊水质和生态系统演化及其可能造成的影响提供必要的基础支撑.  相似文献   

3.
鄱阳湖水利枢纽工程对湖泊水位变化影响的模拟   总被引:8,自引:6,他引:8  
水位变化是影响湖泊水文过程和生态环境的重要因素.本研究基于环境流体动力学(EFDC)模型构建了鄱阳湖水利枢纽工程与主湖区的二维模型,模拟水利枢纽工程运行后对主湖区及湿地保护区水位变化节律的影响.模拟结果表明:水利枢纽工程对湖泊水位的影响由北向南逐渐减小,水利枢纽工程提升了大湖北部水位,使南北水位差减小,将影响鄱阳湖枯水期的流速及自净能力.吴城和南矶湿地自然保护区核心区水位变化受水利枢纽工程的影响较小,吴城自然保护区核心区在水位低于13.8 m时与大湖脱离,不再受水利枢纽工程影响,但水利枢纽工程会影响蚌湖与大湖脱离时间;南矶自然保护区位于鄱阳湖南部,水位受水利枢纽工程影响很小.水利枢纽工程条件下,湖泊水位受人工控制,枯水年和平水年湖泊水位的变化基本一致;枯水年水利枢纽工程对湖泊水位的影响大于平水年,但对湖泊南部的水位变化影响仍然较小.模型模拟结果可以揭示在目前调度方案下,水利枢纽工程对湖泊水位变化节律的影响规律,为工程建设提供一定的理论参考.  相似文献   

4.
受地表河湖系统水情变化干扰,高度动态和异质性的洪泛区地下水文对河湖水资源、水污染以及生态环境功能等方面具有重要影响和贡献。鄱阳湖洪泛区湿地在长江中下游具有重要区位优势和研究特色,但变化环境下其水动力特征和水量交换情况等仍存在许多不确定性。本文以鄱阳湖典型洪泛区为研究区,采用地下水流二维数值模型,开展了洪泛区地表地下水转化作用与水量变化的模拟研究。结果表明,鄱阳湖季节性水位变化很大程度上决定了主湖区与周边地下水之间的动态补排模式,即洪泛区地下水补给湖泊主要发生在枯水和退水时期,而湖泊补给地下水主要发生在涨水和高洪水位时期。一般情况下,整个洪泛区地下水位与湖水位的年内变化态势基本一致,主湖区附近的地下水位年内变幅较大,而大部分洪泛区的地下水位变幅相对较小。北部地下水流速明显大于南部,主湖区附近地下水流速明显大于洪泛区,地下水流速基本小于1~2 m/d。水均衡分析发现,洪泛区地下水系统以接受降雨输入(52%)和主湖区补给(39%)为主,以地下水蒸发输出(72%)和向湖排泄(24%)为主,但补给主要发生在春、夏季,而排泄则发生在秋、冬季。地形地貌对洪泛区地下水位分布以及流速场演化具有主控作用,...  相似文献   

5.
长江及鄱阳湖水系上游水库群运用后鄱阳湖枯季水文节律出现新的变化,为应对新的枯水情势,鄱阳湖水利枢纽作为一个选项被提出,如何确定其适宜的调控水位才能维持鄱阳湖湿地生态系统健康是其中的重点与难点.本文选择鹤类、小天鹅、鸿雁等食植物块茎水鸟作为鄱阳湖湿地生态系统的指示物种,基于EFDC水动力学模型和生境适宜度曲线构建了鄱阳湖越冬水鸟生境数值模拟模型;从食物资源与取食可及性两个方面,分苦草(Vallisneria natans)生长期和水鸟越冬期两个时段,以水深作为关键生境因子,对近10年鄱阳湖苦草及水鸟取食潜在生境面积变化进行了连续模拟;揭示了鄱阳湖苦草及水鸟取食潜在生境面积随水位的变化规律并构建了定量响应函数:苦草潜在生境面积随水位呈单峰型变化,在星子站水位为14.8 m时达到最大,约为1703 km2;越冬水鸟取食潜在生境面积随水位呈三段式变化,最大和最小面积分别约为564和476 km2,相应星子站水位分别为11.73和9.56 m.在此基础上,针对拟建的鄱阳湖水利枢纽工程,基于不同调度分期内生境保护目标的差异确定了符合天然水位波动特征的生态水位动态调控方案:下闸蓄水期内水位宜控制在16 m以下,后续根据越冬水鸟迁入情况逐步下降以增加取食生境面积,在12月次年1月的越冬水鸟数量峰值期水位宜控制在12.5 m以下,后续根据来水情况逐步过渡至江湖连通期的自然状态.成果从保护越冬水鸟食物资源与取食可及性两个方面提出了鄱阳湖水利枢纽生态水位的动态调控阈值,为江湖新水沙条件下鄱阳湖湿地生态系统保育提供了量化依据.  相似文献   

6.
鄱阳湖是长江水系中的两大通江湖泊之一,在调节长江水位、涵养水源、改善当地气候和维护周围地区生态平衡等方面都起着巨大的作用。鄱阳湖水利枢纽的修建可能导致湖泊水文情势和水动力的变化。本文基于MIKE 21构建鄱阳湖二维水动力模型,选取1954年和1998年特大洪水年以及1991年长江倒灌年作为运行期的典型年,选取1995年作为施工期典型年,按照规划中的鄱阳湖水利枢纽工程施工及运行调度方案,计算水利枢纽修建前后鄱阳湖水位和流量的变化,定量分析枢纽工程对长江干流、鄱阳湖湖区及尾闾附近洪水动力的影响。结果表明:不同典型年鄱阳湖水利枢纽对长江干流、湖区及尾闾的洪水动力影响相似,其中洪水期、倒灌期及施工期一期对长江防洪、湖区及尾闾附近的影响较小,施工期二期湖区水位壅高幅度最高达0.237 m,对鄱阳湖湖区及尾闾附近防洪有一定影响;枢纽工程对星子、都昌、康山等湖区水文站水位影响幅度较为接近,且越靠近尾闾,影响越小。整体而言,鄱阳湖水利枢纽的修建会导致洪水年鄱阳湖湖区水位壅高,倒灌期湖区水位降低,湖区流速降低,但变化幅度均较小,故枢纽工程施工期和运行期对汛期行洪影响不大。  相似文献   

7.
洪泛系统具有复杂动态的水文环境,在季节性洪水脉冲影响下,地表—地下水交互转化对洪泛区水循环和生态环境保护等方面具有重要意义.本文采用野外试验、统计分析和达西定律等研究方法,开展了鄱阳湖洪泛区碟形湖湿地系统(河流—洲滩湿地—碟形湖)地表—地下水文学特征、相互作用和交换通量研究.数据资料显示,在地形地貌影响下,研究区洲滩地...  相似文献   

8.
姚静  张奇  李云良  李梦凡 《湖泊科学》2016,28(1):225-236
鄱阳湖属大风区,风场作为仅次于流域"五河"倾泻和长江顶托作用的另一重要驱动力,或在某些时刻影响局部区域的水流结构,进而影响局部水体中泥沙、污染物、营养盐等物质的输移和扩散.基于鄱阳湖二维水动力数学模型,模拟定常风场条件下的鄱阳湖流场分布及环流形式,并与无风条件下的水流时空结构进行对比.结果表明:3.03 m/s的NE向和SSW向定常风对湖泊水位影响微弱;对流速的影响主要集中在7月中旬至9月底的"湖相"期;其影响区域主要分布在湖区中部大湖面偏西岸及东部湖湾,约占湖泊最大水面积的16%;上述区域出现明显环流,环流结构具有时空异质性特点,环流区流速普遍增至无风时的两倍以上;NE向和SSW向风场产生的环流位置相近,方向相反.相比于以往鄱阳湖水动力研究中对风场的忽略,本次研究揭示了定常风场对鄱阳湖的重点影响区域、影响程度及影响形式,可为泥沙及污染物输移模拟中对风场条件的处理及可能带来的误差与误差的空间分布提供重要依据.  相似文献   

9.
周期性水文节律是影响洪泛湖泊洲滩湿地植物群落物种组成与生物多样性的重要驱动力。本研究以鄱阳湖中低滩典型植物群落为研究对象,通过实地样方调查与统计方法分析植物群落的生物多样性格局及其关键环境因子。结果表明:鄱阳湖中低滩代表性群落分别是灰化薹草群落和虉草群落;植物群落的Shannon-Wiener多样性指数均值为1.5,Pielou均匀度指数均值为0.55,生物多样性与物种均匀度偏低。虉草群落的均匀度、多样性指数高于灰化薹草群落,但二者物种丰富度差异不明显。土壤铵态氮、总磷及土壤含水量和高程是影响植物群落结构与生物多样性的关键因子,其中灰化薹草的物种多样性与土壤铵态氮高度相关,而虉草的均匀度则与土壤总磷关系更密切。此外,鄱阳湖中低滩环境下,灰化薹草群落的均匀度随土壤总磷含量的升高呈现U型响应曲线,虉草则是倒U型,这表明,鄱阳湖中低滩环境下,灰化薹草群落和虉草群落生物多样性对单个、同一的环境因子存在不同的适应机制。  相似文献   

10.
三峡工程运行改变了长江中下游水沙情势,影响了鄱阳湖湖区水位,造成了水资源利用、水质、湿地和生态等方面的新问题.实测日水位资料分析认为:湖区水位年内变化可分为低水、涨水、顶托倒灌和退水4个阶段;顶托倒灌阶段湖区水位基本由长江干流控制,另外3个阶段湖区水位受湖口流量和长江干流的共同影响,受影响程度与水位站位置、湖口流量和长江干流相互作用强弱有关;三峡工程运行没有改变鄱阳湖水位"高水湖相、低水河相"的基本特征,但对水位造成了一定影响.开展物理模型试验探索三峡工程运行对湖区水位的影响程度,结果表明:蓄水期三峡工程运行造成湖区水位降幅较大,枯水年都昌站平均(最大)降幅为0.94 m(2.58 m),枯水年湖区水面面积减小68%;增泄期会增加湖区水位,都昌水位最大增幅约1 m,平水年湖区面积增加约32%;枯水期三峡工程运行对鄱阳湖水位基本无影响.  相似文献   

11.
刘慧丽  戴国飞  张伟  廖兵 《湖泊科学》2015,27(2):266-274
鄱阳湖流域内湖库资源众多,柘林湖作为鄱阳湖最大的入湖湖库,是鄱阳湖流域内最大的调节湖库,对鄱阳湖入湖径流有一定的影响,在鄱阳湖的入湖流量中占重要地位.本文以鄱阳湖流域内纳入水质良好湖泊的柘林湖为例,通过对柘林湖的形成及湖泊水系生态环境演变进行探讨,分析近30年来该湖水生生态环境的变化及其关键驱动力因子.综合研究表明:柘林湖水生生物多样性有下降趋势,水质有先变差后改善的趋势,其变化的驱动力主要是流域内人口数量增加、城镇化工业化进程加快、入湖污染负荷逐年增长、滨湖区生态安全屏障受人为破坏以及资源开发不合理等.只有处理好"人湖"和谐、"三次飞跃"和"四大转变",并采取科学合理的措施进行集成研究和综合治理,才能行之有效地改善柘林湖水生生态环境,并发挥其应有的生态效应,从而保障鄱阳湖入湖"一湖清水".  相似文献   

12.
鄱阳湖湿地生态功能重要性分区   总被引:5,自引:1,他引:5  
在分析鄱阳湖湿地自然环境特征和湿地生态系统服务功能特征基础上,利用GIs技术,对鄱阳湖湿地范围进行界定,湿地面积为3886km2.基于湿地生态环境保护和社会经济发展总体要求,按照生态功能区划原理,对湿地进行生态功能重要性分区研究.根据湿地生态功能重要性评价结果将湿地分为极重要区、高度重要区、重要区、一般重要区四个区域,...  相似文献   

13.
湖泊生态水位计算新方法与应用   总被引:2,自引:4,他引:2  
淦峰  唐琳  郭怀成  高伟 《湖泊科学》2015,27(5):783-790
水位是湖泊水文情势的主要特征指标,对湖泊的水量、水质和生物的栖息地等有直接或间接的影响,被认为是湖泊生态系统健康的关键影响因素.如何确定合理的湖泊水位以保证生态系统健康成为湖泊科学研究的重要科学问题.根据湖泊天然水位情势,从天然水文变化中识别多项反映完整水位过程的指标,构建了湖泊生态水位的计算方法.从湖泊天然水位情势中提取出高、低水位的历时、发生时间和变化率等水位指数来表征其生态水位.该方法弥补了传统湖泊生态水位计算方法仅给出最小生态水位的不足,体现了湖泊生态系统健康对水位过程的要求.基于提出的生态水位计算方法和鄱阳湖都昌水位站1952-2000年共49年的日均监测数据,计算了鄱阳湖的生态水位目标值区间,以期为鄱阳湖水利工程生态调度提供决策依据.  相似文献   

14.
三峡工程对鄱阳湖冲淤的影响和预测   总被引:5,自引:3,他引:2  
王云飞 《湖泊科学》1994,6(2):124-130
泥沙淤积是制约湖泊功能的重要因素。三峡工程运行后增减下泄流量,将使鄱阳湖的泥沙交换和淤积作用发生变化。本文根据鄱阳湖的沉积特点,利用典型年的水文过程对库区增减下泄流量时的冲淤变化进行了预测,指出直接的影响不大,但洲滩发展和束狭入江断面的负效应须有所警惕。  相似文献   

15.
Backflow, the temporary reversal of discharge at the outlet of a lake, is an important mechanism controlling flow and transport in many connected river–lake systems. This study used statistical methods to examine long‐term variations and primary causal factors of backflow from the Yangtze River to a laterally connected, large floodplain lake (Poyang Lake, China). Additionally, the effects of backflow on the lake hydrology were explored using a physically based hydrodynamic model and a particle‐tracking model. Although backflow into Poyang Lake occurs frequently, with an average of 16 backflow events per year, and varies greatly in magnitude between years, statistical analysis indicates that both the frequency and magnitude of backflow reduced significantly during 2001–2010 relative to the previous period of 1960–2000. The ratio of Poyang Lake catchment inflows to Yangtze River discharge can be used as an indication of the daily occurrence of backflow, which is most likely to occur during periods when this ratio is lower than 5%. Statistical analysis also indicates that the Yangtze River discharge is the main controlling factor of backflow during July to October, rather than catchment inflows to the lake. Hydrodynamic modelling reveals that, in general, backflow disturbs the normal northward water flow direction in Poyang Lake and transports mass ~20 km southward into the lake. The effects of backflow on flow direction, water velocities and water levels propagate to virtually its upstream extremity. The current study represents a first attempt to explore backflow and causal factors for a highly dynamic floodplain lake system. An improved understanding of Poyang Lake backflow is critical for guiding future strategies to manage the lake, its water quality and ecosystem value, given proposals to modify the lake–river connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号