首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Quantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research. Myocardial T2 mapping is thought to be helpful in diagnosis of acute myocardial conditions associated with myocardial edema. In this study we aimed to establish a technique for myocardial T2 mapping based on gradient-spin-echo (GraSE) imaging.

Methods

The local ethics committee approved this prospective study. Written informed consent was obtained from all subjects prior to CMR. A modified GraSE sequence allowing for myocardial T2 mapping in a single breath-hold per slice using ECG-triggered acquisition of a black blood multi-echo series was developed at 1.5 Tesla. Myocardial T2 relaxation time (T2-RT) was determined by maximum likelihood estimation from magnitude phased-array multi-echo data. Four GraSE sequence variants with varying number of acquired echoes and resolution were evaluated in-vitro and in 20 healthy volunteers. Inter-study reproducibility was assessed in a subset of five volunteers. The sequence with the best overall performance was further evaluated by assessment of intra- and inter-observer agreement in all volunteers, and then implemented into the clinical CMR protocol of five patients with acute myocardial injury (myocarditis, takotsubo cardiomyopathy and myocardial infarction).

Results

In-vitro studies revealed the need for well defined sequence settings to obtain accurate T2-RT measurements with GraSE. An optimized 6-echo GraSE sequence yielded an excellent agreement with the gold standard Carr-Purcell-Meiboom-Gill sequence. Global myocardial T2 relaxation times in healthy volunteers was 52.2 ± 2.0 ms (mean ± standard deviation). Mean difference between repeated examinations (n = 5) was −0.02 ms with 95% limits of agreement (LoA) of [−4.7; 4.7] ms. Intra-reader and inter-reader agreement was excellent with mean differences of −0.1 ms, 95% LoA = [−1.3; 1.2] ms and 0.1 ms, 95% LoA = [−1.5; 1.6] ms, respectively (n = 20). In patients with acute myocardial injury global myocardial T2-RTs were prolonged (mean: 61.3 ± 6.7 ms).

Conclusion

Using an optimized GraSE sequence CMR allows for robust, reliable, fast myocardial T2 mapping and quantitative tissue characterization. Clinically, the GraSE-based T2-mapping has the potential to complement qualitative CMR in patients with acute myocardial injuries.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0127-z) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Myocardial T1 relaxation times have been reported to be markedly abnormal in diverse myocardial pathologies, ascribed to interstitial changes, evaluated by T1 mapping and calculation of extracellular volume (ECV). T1 mapping is sensitive to myocardial water content of both intra- and extracellular in origin, but the effect of intravascular compartment changes on T1 has been largely neglected. We aimed to assess the role of intravascular compartment on native (pre-contrast) T1 values by studying the effect of adenosine-induced vasodilatation in patients with severe aortic stenosis (AS) before and after aortic valve replacement (AVR).

Methods

42 subjects (26 patients with severe AS without obstructive coronary artery disease and 16 controls) underwent cardiovascular magnetic resonance at 3 T for native T1-mapping (ShMOLLI), first-pass perfusion (myocardial perfusion reserve index-MPRI) at rest and during adenosine stress, and late gadolinium enhancement (LGE).

Results

AS patients had increased resting myocardial T1 (1196 ± 47 ms vs. 1168 ± 27 ms, p = 0.037), reduced MPRI (0.92 ± 0.31 vs. 1.74 ± 0.32, p < 0.001), and increased left ventricular mass index (LVMI) and LGE volume compared to controls. During adenosine stress, T1 in AS was similar to controls (1240 ± 51 ms vs. 1238 ± 54 ms, p = 0.88), possibly reflecting a similar level of maximal coronary vasodilatation in both groups. Conversely, the T1 response to stress was blunted in AS (ΔT1 3.7 ± 2.7% vs. 6.0 ± 4.2% in controls, p = 0.013). Seven months after AVR (n = 16) myocardial T1 and response to adenosine stress recovered towards normal. Native T1 values correlated with reduced MPRI, aortic valve area, and increased LVMI.

Conclusions

Our study suggests that native myocardial T1 values are not only influenced by interstitial and intracellular water changes, but also by changes in the intravascular compartment. Performing T1 mapping during or soon after vasodilator stress may affect ECV measurements given that hyperemia alone appears to substantially alter T1 values.  相似文献   

3.

Background

Late Gadolinium Enhancement (LGE) and T2-weighted cardiovascular magnetic resonance (CMR) provides a means to measure myocardial area at risk (AAR) and salvage. Several T2-weighted CMR sequences are in use, but there is no consensus in terms of which sequence to be the preferred. Therefore, the aim of the present study was to: (1) Assess the reproducibility and (2) compare the two most frequently used T2-weighted CMR protocols for measuring AAR and salvage.

Methods

91 patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention underwent a CMR scan 1-7 days after initial treatment. Two different T2-weighted protocols, varying in slice thickness and echo time (TE), were applied covering the entire left ventricle (LV) (protocol 1: TE 65 msec and slice thickness 15 mm; protocol 2: TE 100 msec and slice thickness of 8 mm). On a second scan performed 3 months later, infarct size was assessed with a standard LGE sequence. The two protocols were compared in terms of AAR and salvage index. Furthermore, intra- and interobserver reproducibility were assessed.

Results

Protocol 1 measures a larger AAR and salvage index than protocol 2 with a mean difference in AAR of 1 ± 8%LV (p < 0.01) and 6 ± 12 g (p < 0.01) and salvage index of 0.04 ± 0.12 (p < 0.01). Both protocols had a high intra- and interobserver reproducibility with acceptable limits of agreement (6-8%LV and 6-12 g in AAR and 0.06-0.08 in salvage index).

Conclusions

We report acceptable reproducibility for AAR and salvage index measured by T2-weighted images. Thus CMR is a reliable tool for measuring AAR and salvage index. Protocol 2 (8 mm slice thickness and 100 msec TE) measures slightly smaller AAR than protocol 1 (15 mm slice thickness and 65 msec TE), but the present study does not allow for a clear recommendation of either of the protocols.  相似文献   

4.

Background

Diffuse myocardial fibrosis (DMF) is important in cardiovascular disease, however until recently could only be assessed by invasive biopsy. We hypothesised that DMF measured by T1 mapping is elevated in isolated systemic hypertension.

Methods

In a study of well-controlled hypertensive patients from a specialist tertiary centre, 46 hypertensive patients (median age 56, range 21 to 78, 52 % male) and 50 healthy volunteers (median age 45, range 28 to 69, 52 % male) underwent clinical CMR at 1.5 T with T1 mapping (ShMOLLI) using the equilibrium contrast technique for extracellular volume (ECV) quantification. Patients underwent 24-hours Automated Blood Pressure Monitoring (ABPM), echocardiographic assessment of diastolic function, aortic stiffness assessment and measurement of NT-pro-BNP and collagen biomarkers.

Results

Late gadolinium enhancement (LGE) revealed significant unexpected underlying pathology in 6 out of 46 patients (13 %; myocardial infarction n = 3; hypertrophic cardiomyopathy (HCM) n = 3); these were subsequently excluded. Limited, non-ischaemic LGE patterns were seen in 11 out of the remaining 40 (28 %) patients. Hypertensives on therapy (mean 2.2 agents) had a mean ABPM of 152/88 mmHg, but only 35 % (14/40) had left ventricular hypertrophy (LVH; LV mass male > 90 g/m2; female > 78 g/m2). Native myocardial T1 was similar in hypertensives and controls (955 ± 30 ms versus 965 ± 38 ms, p = 0.16). The difference in ECV did not reach significance (0.26 ± 0.02 versus 0.27 ± 0.03, p = 0.06). In the subset with LVH, the ECV was significantly higher (0.28 ± 0.03 versus 0.26 ± 0.02, p < 0.001).

Conclusion

In well-controlled hypertensive patients, conventional CMR discovered significant underlying diseases (chronic infarction, HCM) not detected by echocardiography previously or even during this study. T1 mapping revealed increased diffuse myocardial fibrosis, but the increases were small and only occurred with LVH.  相似文献   

5.

Background

Cardiovascular magnetic resonance (CMR) derived native myocardial T1 is decreased in patients with Fabry disease even before left ventricular hypertrophy (LVH) occurs and may be the first non-invasive measure of myocyte sphingolipid storage. The relationship of native T1 lowering prior to hypertrophy and other candidate early phenotype markers are unknown. Furthermore, the reproducibility of T1 mapping has never been assessed in Fabry disease.

Methods

Sixty-three patients, 34 (54%) female, mean age 48 ± 15 years with confirmed (genotyped) Fabry disease underwent CMR, ECG and echocardiographic assessment. LVH was absent in 25 (40%) patients. Native T1 mapping was performed with both Modified Look-Locker Inversion recovery (MOLLI) sequences and a shortened version (ShMOLLI) at 1.5 Tesla. Twenty-one patients underwent a second scan within 24 hours to assess inter-study reproducibility. Results were compared with 63 healthy age and gender-matched volunteers.

Results

Mean native T1 in Fabry disease (LVH positive), (LVH negative) and healthy volunteers was 853 ± 50 ms, 904 ± 46 ms and 968 ± 32 ms (for all p < 0.0001) by ShMOLLI sequences. Native T1 showed high inter-study, intra-observer and inter-observer agreement with intra-class correlation coefficients (ICC) of 0.99, 0.98, 0.97 (ShMOLLI) and 0.98, 0.98, 0.98 (MOLLI). In Fabry disease LVH negative individuals, low native T1 was associated with reduced echocardiographic-based global longitudinal speckle tracking strain (−18 ± 2% vs −22 ± 2%, p = 0.001) and early diastolic function impairment (E/E’ = 7 [6–8] vs 5 [5–6], p = 0.028).

Conclusion

Native T1 mapping in Fabry disease is a reproducible technique. T1 reduction prior to the onset of LVH is associated with early diastolic and systolic changes measured by echocardiography.  相似文献   

6.

Purpose

Myocardial T1 relaxation time (T1 time) and extracellular volume fraction (ECV) are altered in patients with diffuse myocardial fibrosis. The purpose of this study was to perform an intra-individual assessment of normal T1 time and ECV for two different contrast agents.

Methods

A modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired at 3 T in 24 healthy subjects (8 men; 28 ± 6 years) at mid-ventricular short axis pre-contrast and every 5 min between 5-45 min after injection of a bolus of 0.15 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Magnevist®) (exam 1) and 0.1 mmol/kg gadobenate dimeglumine (Gd-BOPTA; Multihance®) (exam 2) during two separate scanning sessions. T1 times were measured in myocardium and blood on generated T1 maps. ECVs were calculated as (ΔR1myocardium/ΔR1blood)???(1 ? hematocrit).

Results

Mean pre-contrast T1 relaxation times for myocardium and blood were similar for both the first and second CMR exam (p > 0.5). Overall mean post-contrast myocardial T1 time was 15 ± 2 ms (2.5 ± 0.7%) shorter for Gd-DTPA at 0.15 mmol/kg compared to Gd-BOPTA at 0.1 mmol/kg (p < 0.01) while there was no significant difference for T1 time of blood pool (p > 0.05). Between 5 and 45 minutes after contrast injection, mean ECV values increased linearly with time for both contrast agents from 0.27 ± 0.03 to 0.30 ± 0.03 (p < 0.0001). Mean ECV values were slightly higher (by 0.01, p < 0.05) for Gd-DTPA compared to Gd-BOPTA. Inter-individual variation of ECV was higher (CV 8.7% [exam 1, Gd-DTPA] and 9.4% [exam 2, Gd-BOPTA], respectively) compared to variation of pre-contrast myocardial T1 relaxation time (CV 4.5% [exam 1] and 3.0% [exam 2], respectively). ECV with Gd-DTPA was highly correlated to ECV by Gd-BOPTA (r = 0.803; p < 0.0001).

Conclusion

In comparison to pre-contrast myocardial T1 relaxation time, variation in ECV values of normal subjects is larger. However, absolute differences in ECV between Gd-DTPA and Gd-BOPTA were small and rank correlation was high. There is a small and linear increase in ECV over time, therefore ideally images should be acquired at the same delay after contrast injection.  相似文献   

7.

Background

In hypertrophic cardiomyopathy (HCM), autopsy studies revealed both increased focal and diffuse deposition of collagen fibers. Late gadolinium enhancement imaging (LGE) detects focal fibrosis, but is unable to depict interstitial fibrosis. We hypothesized that with T1 mapping, which is employed to determine the myocardial extracellular volume fraction (ECV), can detect diffuse interstitial fibrosis in HCM patients.

Methods

T1 mapping with a modified Look-Locker Inversion Recovery (MOLLI) pulse sequence was used to calculate ECV in manifest HCM (n = 16) patients and in healthy controls (n = 14). ECV was determined in areas where focal fibrosis was excluded with LGE.

Results

The total group of HCM patients showed no significant changes in mean ECV values with respect to controls (0.26 ± 0.03 vs 0.26 ± 0.02, p = 0.83). Besides, ECV in LGE positive HCM patients was comparable with LGE negative HCM patients (0.27 ± 0.03 vs 0.25 ± 0.03, p = 0.12).

Conclusions

This study showed that HCM patients have a similar ECV (e.g. interstitial fibrosis) in myocardium without LGE as healthy controls. Therefore, the additional clinical value of T1 mapping in HCM seems limited, but future larger studies are needed to establish the clinical and prognostic potential of this new technique within HCM.  相似文献   

8.

Background

In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown.

Methods

8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars.

Results

LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery.

Conclusions

Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined.  相似文献   

9.

Background

T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR.

Methods

We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium.

Results

All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %.

Conclusions

Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis.  相似文献   

10.

Background

To evaluate and quantify the impact of a novel image-based motion correction technique in myocardial T2 mapping in terms of measurement reproducibility and spatial variability.

Methods

Twelve healthy adult subjects were imaged using breath-hold (BH), free breathing (FB), and free breathing with respiratory navigator gating (FB + NAV) myocardial T2 mapping sequences. Fifty patients referred for clinical CMR were imaged using the FB + NAV sequence. All sequences used a T2 prepared (T2prep) steady-state free precession acquisition. In-plane myocardial motion was corrected using an adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC). DICE similarity coefficient (DSC) and myocardial boundary errors (MBE) were measured to quantify the motion estimation accuracy in healthy subjects. T2 mapping reproducibility and spatial variability were evaluated in healthy subjects using 5 repetitions of the FB + NAV sequence with either 4 or 20 T2prep echo times (TE). Subjective T2 map quality was assessed in patients by an experienced reader using a 4-point scale (1-non diagnostic, 4-excellent).

Results

ARCTIC led to increased DSC in BH data (0.85 ± 0.08 vs. 0.90 ± 0.02, p = 0.007), FB data (0.78 ± 0.13 vs. 0.90 ± 0.21, p < 0.001), and FB + NAV data (0.86 ± 0.05 vs. 0.90 ± 0.02, p = 0.002), and reduced MBE in BH data (0.90 ± 0.40 vs. 0.64 ± 0.19 mm, p = 0.005), FB data (1.21 ± 0.65 vs. 0.63 ± 0.10 mm, p < 0.001), and FB + NAV data (0.81 ± 0.21 vs. 0.63 ± 0.08 mm, p < 0.001). Improved reproducibility (4TE: 5.3 ± 2.5 ms vs. 4.0 ± 1.5 ms, p = 0.016; 20TE: 3.9 ± 2.3 ms vs. 2.2 ± 0.5 ms, p = 0.002), reduced spatial variability (4TE: 12.8 ± 3.5 ms vs. 10.3 ± 2.5 ms, p < 0.001; 20TE: 9.7 ± 3.5 ms vs. 7.5 ± 1.4 ms) and improved subjective score of T2 map quality (3.43 ± 0.79 vs. 3.69 ± 0.55, p < 0.001) were obtained using ARCTIC.

Conclusions

The ARCTIC technique substantially reduces spatial mis-alignment among T2-weighted images and improves the reproducibility and spatial variability of in-vivo T2 mapping.  相似文献   

11.

Background

T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.

Methods

Healthy subjects (n = 102; mean age 41 years (range 17–83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.

Results

In healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.

Conclusion

We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-014-0069-x) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

T2 mapping indicates to be a sensitive method for detection of tissue oedema hidden beyond the detection limits of T2-weighted Cardiovascular Magnetic Resonance (CMR). However, due to variability of baseline T2 values in volunteers, reference values need to be defined. Therefore, the aim of the study was to investigate the effects of age and sex on quantitative T2 mapping with a turbo gradient-spin-echo (GRASE) sequence at 1.5 T. For that reason, we studied sensitivity issues as well as technical and biological effects on GRASE-derived myocardial T2 maps. Furthermore, intra- and interobserver variability were calculated using data from a large volunteer group.

Methods

GRASE-derived multiecho images were analysed using dedicated software. After sequence optimization, validation and sensitivity measurements were performed in muscle phantoms ex vivo and in vivo. The optimized parameters were used to analyse CMR images of 74 volunteers of mixed sex and a wide range of age with typical prevalence of hypertension and diabetes. Myocardial T2 values were analysed globally and according to the 17 segment model. Strain-encoded (SENC) imaging was additionally performed to investigate possible effects of myocardial strain on global or segmental T2 values.

Results

Ex vivo studies in muscle phantoms showed, that GRASE-derived T2 values were comparable to those acquired by a standard multiecho spinecho sequence but faster by a factor of 6. Besides that, T2 values reflected tissue water content. The in vivo measurements in volunteers revealed intra- and interobserver correlations with R2=0.91 and R2=0.94 as well as a coefficients of variation of 2.4% and 2.2%, respectively. While global T2 time significantly decreased towards the heart basis, female volunteers had significant higher T2 time irrespective of myocardial region. We found no correlation of segmental T2 values with maximal systolic, diastolic strain or heart rate. Interestingly, volunteers´ age was significantly correlated to T2 time while that was not the case for other coincident cardiovascular risk factors.

Conclusion

GRASE-derived T2 maps are highly reproducible. However, female sex and aging with typical prevalence of hypertension and diabetes were accompanied by increased myocardial T2 values. Thus, sex and age must be considered as influence factors when using GRASE in a diagnostic manner.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0118-0) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Gadolinium (Gd) Extracellular volume fraction (ECV) by Cardiovascular Magnetic Resonance (CMR) has been proposed as a non-invasive method for assessment of diffuse myocardial fibrosis. Yet only few studies used 3 T CMR to measure ECV, and the accuracy of ECV measurements at 3 T has not been established. Therefore the aims of the present study were to validate measurement of ECV by MOLLI T1 mapping by 3 T CMR against fibrosis measured by histopathology. We also evaluated the recently proposed hypothesis that native-T1 mapping without contrast injection would be sufficient to detect fibrosis.

Methods

31 patients (age = 58 ± 17 years, 77 % men) with either severe aortic stenosis (n = 12) severe aortic regurgitation (n = 9) or severe mitral regurgitation (n = 10), all free of coronary artery disease, underwent 3 T-CMR with late gadolinium enhancement (LGE) and pre- and post-contrast MOLLI T1 mapping and ECV computation, prior to valve surgery. LV biopsies were performed at the time of surgery, a median 13 [1–30] days later, and stained with picrosirius red. Pre-, and post-contrast T1 values, ECV, and amount of LGE were compared against magnitude of fibrosis by histopathology by Pearson correlation coefficients.

Results

The average amount of interstitial fibrosis by picrosirius red staining in biopsy samples was 6.1 ± 4.3 %. ECV computed from pre-post contrast MOLLI T1 time changes was 28.9 ± 5.5 %, and correlated (r = 0.78, p < 0.001) strongly with the magnitude of histological fibrosis. By opposition, neither amount of LGE (r = 0.17, p = 0.36) nor native pre-contrast myocardial T1 time (r = −0.18, p = 0.32) correlated with fibrosis by histopathology.

Conclusions

ECV determined by 3 T CMR T1 MOLLI images closely correlates with histologically determined diffuse interstitial fibrosis, providing a non-invasive estimation for quantification of interstitial fibrosis in patients with valve diseases. By opposition, neither non-contrast T1 times nor the amount of LGE were indicative of the magnitude of diffuse interstitial fibrosis measured by histopathology.  相似文献   

14.

Background

The left ventricular performance index (LVGFI) as a comprehensive marker of cardiac performance integrates LV structure with global function within one index. In a prospective cohort study of healthy individuals the LVGFI demonstrated a superior prognostic value as compared to LV ejection fraction (LVEF). In patients after ST-segment elevation myocardial infarction (STEMI), however, the role of the LVGFI is unknown. Aim of this study was to investigate the relationship between the LVGFI and infarct characteristics as well as prognosis in a large multicenter STEMI population.

Methods

In total 795 STEMI patients reperfused by primary angioplasty (<12 h after symptom onset) underwent cardiovascular magnetic resonance (CMR) at 8 centers. CMR was completed within one week after infarction using a standardized protocol including LV dimensions, mass and function for calculation of the LVGFI. The primary clinical endpoint of the study was the occurrence of major adverse cardiac events (MACE).

Results

The median LVGFI was 31.2 % (interquartile range 25.7 to 36.6). Patients with LVGFI < median had significantly larger infarcts, less myocardial salvage, a larger extent of microvascular obstruction, higher incidence of intramyocardial hemorrhage and more pronounced LV dysfunction (p < 0.001 for all). MACE and mortality rates were significantly higher in the LVGFI < median group (p < 0.001 and p = 0.003, respectively). The LVGFI had an incremental prognostic value in addition to LVEF for prediction of all-cause mortality.

Conclusions

The LVGFI strongly correlates with markers of severe myocardial and microvascular damage in patients with STEMI, offering prognostic information beyond traditional cardiac risk factors including the LVEF.

Trials registration

ClinicalTrials.gov: NCT00712101  相似文献   

15.

Background

Acute myocarditis can be diagnosed on cardiovascular magnetic resonance (CMR) using multiple techniques, including late gadolinium enhancement (LGE) imaging, which requires contrast administration. Native T1-mapping is significantly more sensitive than LGE and conventional T2-weighted (T2W) imaging in detecting myocarditis. The aims of this study were to demonstrate how to display the non-ischemic patterns of injury and to quantify myocardial involvement in acute myocarditis without the need for contrast agents, using topographic T1-maps and incremental T1 thresholds.

Methods

We studied 60 patients with suspected acute myocarditis (median 3 days from presentation) and 50 controls using CMR (1.5 T), including: (1) dark-blood T2W imaging; >(2) native T1-mapping (ShMOLLI); (3) LGE. Analysis included: (1) global myocardial T2 signal intensity (SI) ratio compared to skeletal muscle; (2) myocardial T1 times; (3) areas of injury by T2W, T1-mapping and LGE.

Results

Compared to controls, patients had more edema (global myocardial T2 SI ratio 1.71 ± 0.27 vs.1.56 ± 0.15), higher mean myocardial T1 (1011 ± 64 ms vs. 946 ± 23 ms) and more areas of injury as detected by T2W (median 5% vs. 0%), T1 (median 32% vs. 0.7%) and LGE (median 11% vs. 0%); all p < 0.001. A threshold of T1 > 990 ms (sensitivity 90%, specificity 88%) detected significantly larger areas of involvement than T2W and LGE imaging in patients, and additional areas of injury when T2W and LGE were negative. T1-mapping significantly improved the diagnostic confidence in an additional 30% of cases when at least one of the conventional methods (T2W, LGE) failed to identify any areas of abnormality. Using incremental thresholds, T1-mapping can display the non-ischemic patterns of injury typical of myocarditis.

Conclusion

Native T1-mapping can display the typical non-ischemic patterns in acute myocarditis, similar to LGE imaging but without the need for contrast agents. In addition, T1-mapping offers significant incremental diagnostic value, detecting additional areas of myocardial involvement beyond T2W and LGE imaging and identified extra cases when these conventional methods failed to identify abnormalities. In the future, it may be possible to perform gadolinium-free CMR using cine and T1-mapping for tissue characterization and may be particularly useful for patients in whom gadolinium contrast is contraindicated.  相似文献   

16.

Background

The Systemic Capillary Leak Syndrome (SCLS) is a rare disorder of unknown etiology presenting as recurrent episodes of shock and peripheral edema due to leakage of fluid into soft tissues. Insights into SCLS pathogenesis are few due to the scarcity of cases, and the etiology of vascular barrier disruption in SCLS is unknown. Recent advances in cardiovascular magnetic resonance (CMR) allow for the quantitative assessment of the myocardial extracellular volume (ECV), which can be increased in conditions causing myocardial edema. We hypothesized that measurement of myocardial ECV may detect myocardial vascular leak in patients with SCLS.

Methods

Fifty-six subjects underwent a standard CMR examination at the NIH Clinical Center from 2009 until 2014: 20 patients with acute intermittent SCLS, six subjects with chronic SCLS, and 30 unaffected controls. Standard volumetric measurements; late gadolinium enhancement imaging and pre- and post-contrast T1 mapping were performed. ECV was calculated by calibration of pre- and post-contrast T1 values with blood hematocrit.

Results

Demographics and cardiac parameters were similar in both groups. There was no significant valvular disorder in either group. Subjects with chronic SCLS had higher pre-contrast myocardial T1 compared to healthy controls (T1: 1027 ± 44 v. 971 ± 41, respectively; p = 0.03) and higher myocardial ECV than patients with acute intermittent SCLS or controls: 33.8 ± 4.6, 26.9 ± 2.6, 26 ± 2.4, respectively; p = 0.007 v. acute intermittent; P = 0.0005 v. controls). When patients with chronic disease were analyzed together with five patients with acute intermittent disease who had just experienced an acute SCLS flare, ECV values were significantly higher than in subjects with acute intermittent SCLS in remission or age-matched controls and (31.2 ± 4.6 %, 26.5 ± 2.7 %, 26 ± 2.4 %, respectively; p = 0.01 v. remission, p = 0.001 v. controls). By contrast, T1 values did not distinguish these three subgroups (1008 ± 40, 978 ± 40, 971 ± 41, respectively, p = 0.2, active v. remission; p = 0.06 active v. controls). Abundant myocardial edema without evidence of acute inflammation was detected in cardiac tissue postmortem in one patient.

Conclusions

Patients with active SCLS have significantly higher myocardial ECV than age-matched controls or SCLS patients in remission, which correlated with histopathological findings in one patient.  相似文献   

17.

Background

Intramyocardial hemorrhage (IMH) identified by cardiovascular magnetic resonance (CMR) is an established prognostic marker following acute myocardial infarction (AMI). Detection of IMH by T2-weighted or T2 star CMR can be limited by long breath hold times and sensitivity to artefacts, especially at 3T. We compared the image quality and diagnostic ability of susceptibility-weighted magnetic resonance imaging (SW MRI) with T2-weighted and T2 star CMR to detect IMH at 3T.

Methods

Forty-nine patients (42 males; mean age 58 years, range 35–76) underwent 3T cardiovascular magnetic resonance (CMR) 2 days following re-perfused AMI. T2-weighted, T2 star and SW MRI images were obtained. Signal and contrast measurements were compared between the three methods and diagnostic accuracy of SW MRI was assessed against T2w images by 2 independent, blinded observers. Image quality was rated on a 4-point scale from 1 (unusable) to 4 (excellent).

Results

Of 49 patients, IMH was detected in 20 (41%) by SW MRI, 21 (43%) by T2-weighted and 17 (34%) by T2 star imaging (p = ns). Compared to T2-weighted imaging, SW MRI had sensitivity of 93% and specificity of 86%. SW MRI had similar inter-observer reliability to T2-weighted imaging (κ = 0.90 and κ = 0.88 respectively); both had higher reliability than T2 star (κ = 0.53). Breath hold times were shorter for SW MRI (4 seconds vs. 16 seconds) with improved image quality rating (3.8 ± 0.4, 3.3 ± 1.0, 2.8 ± 1.1 respectively; p < 0.01).

Conclusions

SW MRI is an accurate and reproducible way to detect IMH at 3T. The technique offers considerably shorter breath hold times than T2-weighted and T2 star imaging, and higher image quality scores.  相似文献   

18.

Background

Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. The prevalence and features of cocaine cardiotoxicity are not well known. We aimed to assess these effects using a comprehensive cardiovascular magnetic resonance (CMR) protocol in a large group of asymptomatic cocaine users.

Methods

Consecutive (n = 94, 81 males, 36.6 ±7 years), non-selected, cocaine abusers were recruited and had a medical history, examination, ECG, blood test and CMR. The CMR study included measurement of left and right ventricular (LV, RV) dimensions and ejection fraction (EF), sequences for detection of myocardial oedema and late gadolinium enhancement (LGE). Images were compared to a cohort of healthy controls.

Results

Years of regular cocaine use were 13.9 ± 9. When compared to the age-matched healthy cohort, the cocaine abusers had increased LV end-systolic volume, LV mass index and RV end-systolic volume, with decreased LVEF and RVEF. No subject had myocardial oedema, but 30% had myocardial LGE indicating myocardial damage.

Conclusions

CMR detected cardiovascular disease in 71% of this cohort of consecutive asymptomatic cocaine abusers and mean duration of abuse was related to probability of LV systolic dysfunction.  相似文献   

19.

Background

The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors.

Methods

Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography.

Results

Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose.

Conclusions

Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning.  相似文献   

20.

Background

The natural history of acute myocarditis (AM) remains highly variable and predictors of outcome are largely unknown. The objectives were to determine the potential value of various cardiovascular magnetic resonance (CMR) parameters for the prediction of adverse long-term outcome in patients presenting with suspected AM.

Methods

In a single-centre longitudinal prospective study, 203 routine consecutive patients with an initial CMR-based diagnosis of AM (typical Late Gadolinium Enhancement, LGE) were followed over a mean period of 18.9 ± 8.2 months. Various CMR parameters were evaluated as potential predictors of outcome. The primary endpoint was defined as the occurrence of at least one of the combined Major Adverse Clinical Events (MACE) (cardiac death or aborted sudden cardiac death, cardiac transplantation, sustained documented ventricular tachycardia, heart failure, recurrence of acute myocarditis, and the need for hospitalization for cardiac causes).

Results

The vast majority of patients (N = 143,70 %) presented with chest pain, mild to moderate troponin elevation and ST-segment or T wave abnormalities. Various CMR parameters were evaluated on initial CMR performed 3 ± 2 days after acute clinical presentation (LV functional parameters, presence/extent of edema on T2 CMR, and extent of late gadolinium enhancement lesions). Out of the 203 patients, 22 experienced at least one major cardiovascular event (10.8 %) during follow-up for a total of 31 major cardiovascular events. Among all CMR parameters, the only independent CMR predictor of adverse clinical outcome by multivariate analysis was an initial alteration of LVEF (p = 0.04).

Conclusions

In routine consecutive patients without severe hemodynamic compromise and a CMR-based diagnosis of AM, various CMR parameters such as the presence and extent of myocardial edema and the extent of late gadolinium-enhanced LV myocardial lesions were not predictive of outcome. The only independent CMR predictor of adverse clinical outcome was an initial alteration of LVEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号