首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Research Bulletin》2013,48(11):4723-4728
Self-dopant LaMnO3+δ nanoparticles have been successfully synthesized by metal citrate complex method based on Pechini-type reaction route, at low temperature (773 K). Powder X-ray diffraction and transmission electron microscope revealed pure and nanostructured phase of LaMnO3+δ (δ = 0.125) with an average grain size of ∼72 nm (773 K) and ∼80 nm (1173 K). DC-magnetization measurements under an applied magnetic field of H = ±60 kOe showed an increase in the magnetization with the increase of calcination temperature. Ferromagnetic nature shown by non-stoichiometric LaMnO3+δ was verified by well-defined hysteresis loop with large remanent magnetization (Mr) and coercive field (Hc). Surface areas of LaMnO3+δ nanoparticles were found to be 157.4 and 153 m2 g−1 for the samples annealed at 773 K and 1173 K, respectively.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4544-4547
For the first time, Cu nanoparticles were evenly decorated on MoS2 nanosheet by chemical reduction. The as-prepared Cu-MoS2 hybrid was characterized by atomic force microscope (AFM), Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and then used to fabricate a non-enzymatic glucose sensor. The performance of our sensor was investigated by cyclic voltammetry and amperometric measurement in alkaline media. Electrochemical tests showed that Cu-MoS2 hybrid exhibited synergistic electrocatalytic activity on the oxidation of glucose with a high sensitivity of 1055 μA mM−1 cm−2 and a linear range up to 4 mM.  相似文献   

3.
Heavy metal oxide B2O3–PbO–Bi2O3–GeO2 transparent glass doped with Sm3+ was synthesized and implanted with Au+ using energy of 300 keV and fluence of 1 × 1016 cm−2. The annealing of the implanted glass at moderate temperature below the glass transition temperature induced the nucleation of gold nanoparticles, confirmed by the characteristic absorption band in the visible range and by transmission electron microscopy. Using Miés and Doylés theories for the surface plasmon resonance, the average size of the gold nanoparticles was about 4.6 nm, similar to the values observed by transmission electron microscopy. It was also observed the crystallization of a thin layer of the glass at the implanted surface after annealing, detected by X-ray diffraction and scanning electron microscope. Visible and near-infrared emission of Sm3+ was enhanced after annealing of the glass implanted with gold. Judd–Ofelt parameters and radiative parameters were calculated for the glass doped with Sm3+ with and without gold nanoparticles.  相似文献   

4.
Cu doped ZnO nanoparticle sheets were synthesized via a proposed solution route with mixed Zn(NO3)2 and Cu(NO3)2 precursors at a low temperature of 95 °C. Scanning electron microscopy, transmission electron microscopy, and X-ray energy dispersive spectrometry results demonstrate that the nanostructues synthesized by solutions with higher Cu(NO3)2 concentration are nanoparticle sheets comprised of uniform Cu doped ZnO nanoparticles with diameters around 20 nm. Room-temperature photoluminescence spectra of the nanoparticle sheets show tunable near band emissions centered at 390–405 nm and strong yellow emissions at 585–600 nm. Absorbance spectra show gradual redshift in the UV range with the increase of Cu concentrations in the ZnO nanomaterials. The study provides a simple and efficient route to prepare Cu doped ZnO nanomaterials at low temperature. The as-synthesized products with both violet and yellow emissions are promising for white light-emitting diode applications.  相似文献   

5.
We report a new method for selective detection of d(+)-glucose using a copper nanoparticles (Cu-NPs) attached zinc oxide (ZnO) film coated electrode. The ZnO and Cu-NPs were electrochemically deposited onto indium tin oxide (ITO) coated glass electrode and glassy carbon electrode (GCE) by layer-by-layer. In result, Cu-NPs/ZnO composite film topography was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. SEM and AFM confirmed the presence of nanometer sized Cu-NPs/ZnO composite particles on the electrode surface. In addition, X-ray diffraction pattern revealed that Cu-NPs and ZnO films were attached onto the electrode surface. Indeed, the Cu-NPs/ZnO composite modified electrode showed excellent electrocatalytic activity for glucose oxidation in alkaline (0.1 M NaOH) solution. Further, we utilized the Cu-NPs/ZnO composite modified electrode as an electrochemical sensor for detection of glucose. This glucose sensor showed a linear relationship in the range from 1 × 10? 6 M to 1.53 × 10? 3 M and the detection limit (S/N = 3) was found to be 2 × 10? 7 M. The Cu-NPs/ZnO composite as a non-enzymatic glucose sensor presents a number of attractive features such as high sensitivity, stability, reproducibility, selectivity and fast response. The applicability of the proposed method to the determination of glucose in human urine samples was demonstrated with satisfactory results.  相似文献   

6.
A semiconductor ethanol sensor was developed using ZnO–CuO and its performance was evaluated at room temperature. Hetero-junction sensor was made of ZnO–CuO nanoparticles for sensing alcohol at room temperature. Nanoparticles were prepared by hydrothermal method and optimized with different weight ratios. Sensor characteristics were linear for the concentration range of 150–250 ppm. Composite materials of ZnO–CuO were characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR) and high-resolution transmission electron microscopy (HR-TEM). ZnO–CuO (1:1) material showed maximum sensor response (S = Rair/Ralcohol) of 3.32 ± 0.1 toward 200 ppm of alcohol vapor at room temperature. The response and recovery times were measured to be 62 and 83 s, respectively. The linearity R2 of the sensor response was 0.9026. The sensing materials ZnO–CuO (1:1) provide a simple, rapid and highly sensitive alcohol gas sensor operating at room temperature.  相似文献   

7.
《Advanced Powder Technology》2014,25(3):1016-1025
Nanostructures of Zn1xMgxO (0  x  0.2) were prepared in water by one-pot method under microwave irradiation for 5 min. In this method, zinc acetate, magnesium nitrate and sodium hydroxide were used as starting materials without using any additive and post preparation treatment. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), Fourier transform-infrared (FT-IR), and the Brunauer–Emmett–Teller (BET) techniques. The nanostructures have wurtzite hexagonal crystalline phase and doping of Mg2+ ions does not change the phase of ZnO. The SEM and TEM images show that morphology of the samples is changing by doping of Mg2+ ions. The EIS data show that by doping the ion, interfacial charge transfer resistance of the nanostructures decreases. Photocatalytic activity of the nanostructures was evaluated by degradation of methylene blue (MB) under UV irradiation. The degradation rate constant on the nanostructures with 0.15 mol fraction of Mg2+ ions is about 2-fold greater than for ZnO. Moreover, influence of various operational parameters such as microwave irradiation time, calcination temperature, weight of catalyst, concentration of MB, pH of solution and scavengers of reactive species on the degradation rate constant was investigated and the results were discussed.  相似文献   

8.
Highly uniform and well-dispersed cerium oxide quantum dots were successfully synthesized by simple precipitation method by using cerium ammonium nitrate and ammonium hydroxide as precursor materials with suitable conditions. The X-ray diffraction pattern indicates the formation of cubic phase CeO2. The average particle size of cerium oxide from high resolution transmission electron microscopy (HRTEM) was found to be 3 nm. The X-ray photoelectron (XPS) spectrum confirms the presence of Ce3+ in CeO2. Optical studies by UV–vis spectroscopy for the synthesized CeO2 nanoparticles exhibit a blue shift (Eg = 3.78 eV) with respect to the bulk material (Eg = 3.15 eV) due to quantum confined exciton absorption.  相似文献   

9.
《Materials Research Bulletin》2013,48(11):4733-4737
This study investigates the emission properties of the Er3+/Nd3+ ions codoped 70GeS2–10In2S3–20CsBr chalcohalide glasses. The vacuumed melt-quenching technique is employed to synthesize the glasses. The absorption spectra, upconversion and near-IR emission spectra as well as fluorescence decay curves are collected. With the increasing concentration of Er3+ ions, the lifetimes at 1073 nm for Nd3+ ions decrease from 538 to 420 μs under 808 nm excitation. Meanwhile, the lifetimes at 1540 nm for Er3+ ions decrease from 245 to 214 μs with the increasing concentration of Nd3+ ions. The emission spectra and lifetimes show that energy transfer exists between the Nd3+ and Er3+ ions. The luminescence and detailed energy transfer mechanisms are schematically proposed.  相似文献   

10.
《Materials Research Bulletin》2013,48(11):4601-4605
Bi@Bi2O3@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi2O3@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi2O3@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi2O3@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O2-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O2 are the main active oxidative species.  相似文献   

11.
The metallic silver nanoparticles (NPs) was introduced into the Er3+/Ce3+/Yb3+ tri-doped tellurite glasses with composition TeO2–ZnO–La2O3 to improve the 1.53 μm band fluorescence. The UV/Vis/NIR absorption spectra, 1.53 μm band fluorescence spectra, fluorescence lifetimes, X-ray diffraction (XRD) curves, differential scanning calorimeter (DSC) curves and transmission electron microscopy (TEM) image of tri-doped tellurite glasses were measured, together with the Judd–Ofelt intensity parameters, emission cross-sections, absorption cross-sections and radiative quantum efficiencies were calculated to investigate the effects of silver NPs on the 1.53 μm band spectroscopic properties of Er3+ ions, structural nature and thermal stability of glass hosts. It is shown that Er3+/Ce3+/Yb3+ tri-doped tellurite glasses can emit intense 1.53 μm band fluorescence through the combined energy transfer (ET) processes from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions under the 980 nm excitation. At the same time, the introduction of an appropriate amount of silver NPs can further improve the 1.53 μm band fluorescence owing to the enhanced local electric field effect induced by localized surface Plasmon resonance (LSPR) of silver NPs and the possible energy transfer from silver NPs to Er3+ ions, and an improvement by about 120% of fluorescence intensity is found in the studied Er3+/Ce3+/Yb3+ tri-doped tellurite glass containing 0.5 mol% amount of silver NPs with average diameter of ∼15 nm. The energy transfer mechanisms from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions were also quantitatively investigated by calculating energy transfer microparameters and phonon contribution ratios. Furthermore, the thermal stability of glass host increases slightly with the introduction of silver NPs while the glass structure maintains the amorphous nature. The results indicate that the prepared Er3+/Ce3+/Yb3+ tri-doped tellurite glass with an appropriate amount of silver NPs is an excellent gain medium applied for 1.53 μm band EDFA pumped with a 980 nm laser diode (LD).  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4901-4906
Nanocrystalline titanium oxide (TiO2) thin films were deposited on silicon (1 0 0) and quartz substrates at various oxygen partial pressures (1 × 10−5 to 3.5 × 10−1 mbar) with a substrate temperature of 973 K by pulsed laser deposition. The microstructural and optical properties were characterized using Grazing incidence X-ray diffraction, atomic force microscopy, UV–visible spectroscopy and photoluminescence. The X-ray diffraction studies indicated the formation of mixed phases (anatase and rutile) at higher oxygen partial pressures (3.5 × 10−2 to 3.5 × 10−1 mbar) and strong rutile phase at lower oxygen partial pressures (1 × 10−5 to 3.5 × 10−3 mbar). The atomic force microscopy studies showed the dense and uniform distribution of nanocrystallites. The root mean square surface roughness of the films increased with increasing oxygen partial pressures. The UV–visible studies showed that the bandgap of the films increased from 3.20 eV to 3.60 eV with the increase of oxygen partial pressures. The refractive index was found to decrease from 2.73 to 2.06 (at 550 nm) as the oxygen partial pressure increased from 1.5 × 10−4 mbar to 3.5 × 10−1 mbar. The photoluminescence peaks were fitted to Gaussian function and the bandgap was found to be in the range ∼3.28–3.40 eV for anatase and 2.98–3.13 eV for rutile phases with increasing oxygen partial pressure from 1 × 10−5 to 3.5 × 10−1 mbar.  相似文献   

13.
Mn-doped ZnO nanorods with ~30 nm in diameter and ~200 nm in length were synthesized by a seed-mediated solution method. The structures, magnetic properties, as well as the annealing effect were characterized by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectrum and physical properties measurement system. Magnetic properties measurement revealed that the Zn0.97Mn0.03O nanorods exhibited ferromagnetism with a saturation magnetization of 0.005 emu g?1 and a coercivity of 110 Oe at 305 K. After annealing the samples at 900 °C for 2 h in air, the nanorods were transformed into nanoparticle aggregates. The coercivity and saturation magnetization increased obviously. Detailed analyses proved that a phase-separation process was happened at the high temperature. In this process, most of the particles preserved the wurtzite ZnO structure, while a few small ones evolved into spinel-structured particles. The increasing of the ferromagnetism of the annealed sample is attributed to the formation of secondary phase ZnxMn3?xO4.  相似文献   

14.
Zinc oxide (ZnO) was synthesized using a microwave assisted hydrothermal (MAH) process based on chloride/urea/water solution and under 800 W irradiation for 5 min. In the bath, Zn2+ ions reacted with the complex carbonate and hydroxide ions to form zinc carbonate hydroxide hydrate (Zn4CO3(OH)6·H2O), and the conversion from Zn4CO3(OH)6·H2O to ZnO was synchronously achieved by a MAH process. The as-prepared ZnO has a sponge-like morphology. However, the initial sponge-like morphology of ZnO could change to a net-like structure after thermal treatment, and compact nano-scale ZnO particles were finally obtained when the period of thermal treatment increased to 30 min. Pure ZnO nanoparticles was obtained from calcination of loose sponge-like ZnO particles at 500 °C. The analysis of optical properties of these ZnO nanoparticles showed that the intensity of 393 nm emission increased with the calcination temperature because the defects were reduced and the crystallinity was improved.  相似文献   

15.
Zinc oxide (ZnO) was site-selectively grown on the palladium (Pd) catalyst through the electroless deposition process under mild conditions, and the effects of deposition temperature and chemical composition on the ZnO crystal growth were investigated. ZnO crystals were synthesized on the UV-patterned Pd catalysts in the aqueous solutions of various dimethylamine borane (DMAB)/Zn(NO3)2 ratio at 30–70 °C. The site-selective deposition was confirmed by X-ray photoelectron spectroscopy (XPS) data and elemental maps of Pd, Zn and oxygen in energy-filtering transmission electron microscopy (EFTEM), and the crystal morphology was observed by scanning electron microscopy (SEM). A strong near band emission at around 390 nm and a weak green emission at around 470 nm were observed in the photoluminescence (PL) spectrum. The ZnO crystals were grown in the following three steps: (1) ZnO fibrils were generated on the Pd catalysts and became sphere-like particles, (2) hexagonal wurtzite crystals initiated to grow from the sphere-like particles, and (3) the crystals grew in two directions—longitudinal and lateral growths giving rod-type or needle-type hexagonal crystals. It was found that longitudinal growth rate increased with increasing deposition temperature or DMAB/Zn(NO3)2 ratio.  相似文献   

16.
Highly uniform SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF2 microspheres were discussed in detail. In addition, the as-obtained SrF2:Eu3+ sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF2:Tb3+ exhibits a strong green emission at 540 nm. The as-synthesized SrF2:Ln3+ luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.  相似文献   

17.
《Materials Research Bulletin》2013,48(11):4947-4952
60ZnCl2–20KCl–20BaCl2xTbCl3 glasses (x = 0.10, 0.25, 0.50, 0.75, 1.00, and 1.25) were prepared by melt-quenching method, and Tb3+ fluorescence properties were investigated under 355 nm excitation. Regardless of x values, the electrons that were relaxed from the 5D3 to 5D4 level of Tb3+ ions by the multiphonon relaxation, were repressed to 28% of all the excited electrons because the ZnCl2-based glass had much lower phonon energy than oxide glasses. For 0 < x  0.34, the cross relaxation, (5D3  5D4)  (7F0  7F6), was repressed, and consequently 72% and 28% of all the excited electrons were radiatively relaxed by the 5D3  7FJ (J = 6, 5, 4, 3, and 2) and 5D4  7FJ (J = 6, 5, 4, and 3) transitions, respectively. The lifetimes of the 5D3 and 5D4 initial levels were obtained to be 1.1 and 2.1 ms, respectively.  相似文献   

18.
In the present work, we have discussed the structural and photoluminescent properties of Al2O3 nanoparticles doped with Cr3+ ion prepared through solution combustion synthesis (SCS) technique. SCS is a well-known method for the production of different metal oxides and composite materials such as metal matrix composites and for producing this need an extra reduction step. The set of samples differing in activator concentration were studied carefully by means of structural and optical characterization methods. In particular, the transmission electron microscopy (TEM) has been deployed together with X-ray diffraction (XRD) technique to determine fundamental structural properties of nanoparticles. XRD results showed that pure α-Al2O3 single phase was obtained and TEM result indicates that nanoparticles are spherical in shape. The selected area electron diffraction (SAED) and Energy dispersive analysis by X-rays (EDAX) analysis suggested the crystallinity and chemical composition of the Cr3+ doped Al2O3. The change in crystal structure parameters was obtained by Rietveld refinement method. The optical characterization focused mainly on the basic excitation and emission features and their sensitivity to the dopant concentrations. The excitation spectrum of Cr3+-doped Al2O3 nanopowders consist of two bands peaking at 406 nm and 570 nm and the emission spectrum consist of two bands peaking at 694 nm and 670 nm.  相似文献   

19.
The present work aims at investigating the effects that different levels of Nd atoms incorporation can have on the microstructure and chemical structure of ZnO thin films. Undoped and Nd-doped ZnO films were deposited by RF co-sputtering from pure ZnO and metallic Nd targets in Ar plasma onto Si, quartz and glass substrates. The Nd concentration in the ZnO host matrix was varied in the range 0–26 at.% by varying the bias applied to the Nd target. A comprehensive characterization of the films properties was performed by X-ray photoelectron and Auger electron spectroscopies, X-ray fluorescence analysis, X-ray diffraction and scanning electron microscopy. At low Nd atomic concentration (Nd/Zn < 0.07) Nd atoms were successfully incorporated into the ZnO matrix, whose crystalline structure was preserved. A deterioration of the ZnO würtzite phase was observed on the contrary with increasing Nd content in the films together with the precipitation of a second phase, identified as Nd2O3.  相似文献   

20.
《Advanced Powder Technology》2014,25(5):1449-1454
Rod-like and flake-like up-converting Y2O3:Yb3+/Ho3+ particles which are composed of nanoparticles with size less than 100 nm, are prepared by a simple hydrothermal processing at 473 K (3 h) followed by additional thermal treatment at 1373 K (3 and 12 h). The effect of precursor pH value on the formation of Y2O3:Yb3+/Ho3+ is followed through X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Structural refinement confirms formation of the cubic bixbyte structure (S.G. Ia-3) with the non-uniform accommodation of dopants at C2 and S6 cationic sites. Under 978 nm laser excitation, strong green (530–570 nm) up-conversion is observed in all samples. The emission shows a decrease in intensity with an increase in external temperature, indicating FIR (fluorescence intensity ratio) based temperature sensing behavior of 0.52% for the 5F4  5I8/5S2  5I8 transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号