首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is focused on the basic study and optimization of short time (<10 min) Chemical Bath Deposition (CBD) of Zn(S,O,OH) buffer layers in co‐evaporated Cu(In,Ga)Se2 (CIGSe) and electrodeposited CuIn(S,Se)2 ((ED)‐CIS) solar cells for industrial applications. First, the influence of the deposition temperature is studied from theoretical solution chemistry considerations by constructing solubility diagrams of ZnS, ZnO, and Zn(OH)2 as a function of temperature. In order to reduce the deposition time under 10 min, experimental growth deposition studies are then carried out by the in situ quartz crystal microgravimetry (QCM) technique. An optimized process is performed and compared to the classical Zn(S,O,OH) deposition. The morphology and composition of Zn(S,O,OH) films are determined using SEM and XPS techniques. The optimized process is tested on electrodeposited‐CIS and co‐evaporated‐CIGSe absorbers and cells are completed with (Zn,Mg)O/ZnO:Al windows layers. Efficiencies similar or even better than CBD CdS/i‐ZnO reference buffer layers are obtained (15·7% for CIGSe and 8·1% for (ED)‐CIS). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A ZnS/Zn1‐xMgxO buffer combination was developed to replace the CdS/i‐ZnO layers in in‐line co‐evaporated Cu(In,Ga)Se2(CIGS)‐based solar cells. The ZnS was deposited by the chemical bath deposition (CBD) technique and the Zn1‐xMgxO layer by RF magnetron sputtering from ceramic targets. The [Mg]/([Mg] + [Zn]) ratio in the target was varied between x = 0·0 and 0·4. The composition, the crystal structure, and the optical properties of the resulting layers were analyzed. Small laboratory cells and 10 × 10 cm2 modules were realized with high reproducibility and enhanced stability. The transmission is improved in the wavelength region between 330 and 550 nm for the ZnS/Zn1‐xMgxO layers. Therefore, a large gain in the short‐circuit current density up to 12% was obtained, which resulted in higher conversion efficiencies up to 9% relative as compared to cells with the CdS/i‐ZnO buffer system. Peak efficiencies of 18% with small laboratory cells and 15·2% with 10 × 10 cm2 mini‐modules were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Cu(In,Ga)Se2 (CIGS) and related semiconducting compounds have demonstrated their high potential for high-efficiency thin-film solar cells. The highest efficiency for CIGS-based thin-film solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, Zn(Se,OH)x buffer layers were deposited by CBD on polycrystalline Cu(In,Ga)(S,Se)2 (CIGSS). A total-area conversion efficiency of 13·7% was certified by the Frauenhofer Institute for Solar Energy Systems. The CIGSS absorber was fabricated by Siemens Solar Industries (California). For device optimization, the thickness and good surface coverage were controlled by XPS–UPS photoemission spectroscopy. A Zn(Se,OH)x thickness below 7 nm has been found to be optimum for achieving a homogeneous and compact buffer film on CIGSS, with open-circuit photovoltage Voc=535 mV, fill factor FF=70·76% and a high short-circuit photocurrent density Jsc=36·1 mA cm−2. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells for Cd‐free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO : Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical‐bath‐deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO : Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO : Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO : Al film was developed. It consists of a 50‐nm‐thick ZnO : Al plasma protection layer deposited at a sputtering power of 50 W and a 100‐nm‐thick ZnO : Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50‐nm‐thick ZnO : Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open‐circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO : Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO : Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
An eco-friendly Zn(O,S) film with a wider band gap is emerging as one of the promising Cd-free replacement material, which can be deposited by radio frequency sputtering. The effect of sputtering pressure on the Zn(O,S) films properties and the devices performance are studied systematically. At high pressure, the ZnS phase is found in the Zn(O,S) films resulting in a higher barrier at Zn(O,S) /CIGS interface which would lead to a low recombination activation energy (Ea). By reducing sputtering pressure, single phase of Zn(O,S) films are conducive to carrier transport as well as pro- mote the films electric properties, ultimately improving the performance of Zn(O,S)/CIGS solar cells. This work has been supported by the National Natural Science Foundation of China (Nos.61774089, 51572132 and 61504067), and the Yang Fan Innovative & Entrepreneurial Research Team Project (No.2014YT02N037). E-mail:wwl@nankai.edu.cn   相似文献   

6.
The effects of the immersion into a NH3 aqueous solution on the structural characteristics of the chemically deposited Zn(S,O,OH) layer and photovoltaic performance of the CIGS/Zn(S,O,OH) solar cells were investigated with structural and electrical characterizations. The as‐deposited‐Zn(S,O,OH) layer possessed a layered structure of upper Zn(OH)2 and Zn(S,O) layers, and the upper Zn(OH)2 layer was removed by the immersion. The conversion efficiency for the CIGS solar cell was improved from 6.8% to 13.7% by removing the upper Zn(OH)2 layer during the immersion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Fabrication of Zn1−xMgxO films by atomic layer deposition (ALD) has been studied for use as buffer layers in Cu(In,Ga)Se2 (CIGS)‐based solar cell devices. The Zn1−xMgxO films were grown using diethyl zinc, bis‐cyclopentadienyl magnesium and water as precursors in the temperature range from 105 to 180°C. Single‐phase ZnO‐like films were obtained for x < 0·2, followed by a two phase region of ZnO‐ and MgO‐like structures for higher Mg concentrations. Increasing optical band gaps of up to above 3·8 eV were obtained for Zn1−xMgxO with increasing x. It was found that the composition of the Zn1−xMgxO films varied as an effect of deposition temperature as well as by increasing the relative amount of magnesium precursor pulses during film growth. Completely Cd‐free CIGS‐based solar cells devices with ALD‐Zn1−xMgxO buffer layers were fabricated and showed efficiencies of up to 14·1%, which was higher than that of the CdS references. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
(Cd,Zn)S buffer layer and Zn1−x Mgx O window layer were investigated to replace the traditional CdS buffer layer and ZnO window layer in Cu(In,Ga)(Se,S)2 (CIGSSe)‐based solar cell. (Cd,Zn)S with band‐gap energy (E g) of approximately 2.6 eV was prepared by chemical bath deposition, and Zn1−x Mgx O films with different [Mg]/([Mg] + [Zn]) ratios, x , were deposited by radio frequency magnetron co‐sputtering of ZnO and MgO. The estimated optical E g of Zn1−x Mgx O films is linearly enhanced from 3.3 eV for pure ZnO (x  = 0) to 4.1 eV for Zn0.6Mg0.4O (x  = 0.4). The quality of the Zn1−x Mgx O films, implied by Urbach energy, is severely deteriorated when x is above 0.211. Moreover, the temperature‐dependent current density‐voltage characteristics of the CIGSSe solar cells were conducted for the investigation of the heterointerface recombination mechanism. The external quantum efficiency of the CIGSSe solar cell with the (Cd,Zn)S buffer layer/Zn1−x Mgx O window layer is improved in the wavelength range of 320–520 nm. Therefore, a gain in short‐circuit current density up to about 5.7% was obtained, which is higher conversion efficiency of up to around 5.4% relative as compared with the solar cell with the traditional CdS buffer layer/ZnO window layer. The peak efficiency of 19.6% was demonstrated in CIGSSe solar cell with (Cd,Zn)S buffer layer and Zn1−x Mgx O window layer, where x is optimized at 0.211. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high‐efficiency thin‐film solar cells was derived using X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small‐spike) conduction band alignment (here: a conduction band offset of (0.09 ± 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high‐efficiency Zn(O,S)‐based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

11.
The impacts of air annealing, light soaking (LS), and heat–light soaking (HLS) on cell performances were investigated for ZnS(O,OH)/Cu(In,Ga)Se2 (CIGS) thin‐film solar cells. It was found that the HLS post‐treatment, a combination of LS and air annealing at 130 °C, is the most effective process for improving the cell performances of ZnS(O,OH)/CIGS devices. The best solar cell yielded a total area efficiency of 18.4% after the HLS post‐treatment. X‐ray photoelectron spectroscopy showed that the improved cell performance was attributable to the decreased S/(S + O) atomic ratio, not only in the surface region but also the interface region between the ZnS(O,OH) and CIGS layers, implying the shift to an adequate conduction‐band offset at the ZnS(O,OH)/CIGS interface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
报道了CdS薄膜的CBD法沉积及其结构特性,其中的水浴溶液包括硫脲、乙酸镉、乙酸铵和氨水溶液.研究了水浴溶液的pH值、温度、各反应物溶液的浓度和滴定硫脲与倾倒硫脲等基本工艺参数对CdS薄膜结构特性的影响.其中,溶液的pH值对CdS薄膜的特性起着关键的作用.XRD图显示了随着溶液pH值的变化,薄膜的晶相由六方相向立方相转变.CdS薄膜的这两种晶相对CIGS薄膜太阳电池性能的影响不相同.c-CdS(立方相的CdS)与CIGS之间的晶格失配和界面态密度分别为1.419%和8.507×1012cm-2,而h-CdS(六方相的CdS)与CIGS之间的晶格失配和界面态密度则分别为32.297%和2.792×1012cm-2.高效CIGS薄膜太阳电池需要的是立方相CdS薄膜.  相似文献   

13.
Texture and morphology variations in co‐evaporated (In,Ga)2Se3 and Cu(In,Ga)Se2 (CIGS) films grown with various Se source conditions during growth were studied. The Se species of simply evaporated, large molecular Se (E‐Se, low‐sticking coefficient), and RF‐plasma cracked atomic Se (R‐Se, high sticking coefficient) were used in the present work. (In,Ga)2Se3 precursor films, which were prepared during the first stage of CIGS film growth by the three‐stage process, showed systematic variations in texture and Na distribution profile with varying evaporative Se (E‐Se) flux. The properties of CIGS films and solar cells also showed systematic variations, and the open‐circuit voltage (Voc) and fill factor were found to be especially sensitive to the E‐Se flux. R‐Se grown (In,Ga)2Se3 precursor films featured granular morphology with strong (105) and (301) peaks in the diffraction pattern, and the texture was very similar to an E‐Se grown film fabricated with a Se to group III metal (In + Ga) flux ratio (P[Se]/[In + Ga]) of about 6, although the nominal P[Se]/[In + Ga] used for an R‐Se source was very small and less than 0.5. The R‐Se grown CIGS films displayed, however, highly dense surfaces and larger grain sizes than E‐Se grown CIGS films. The controllability of film morphology and the Na diffusion profile in (In,Ga)2Se3 and CIGS films with various Se source conditions are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Antimony selenosulfide (Sb2(S,Se)3) is considered as a promising light-harvesting material and has been widely used in solar cells. For high-efficiency Sb2(S,Se)3 solar cells, the most commonly used electron-transporting layer of cadmium sulfide (CdS) is generally prepared by chemical bath deposition (CBD) approach. However, the hazardous waste liquid from the chemical bath and the sensitivity of the deposition process to the environment are challenges to practical applications. Herein, a molecular beam epitaxy deposition is reported to prepare CdS films, overcoming the drawbacks of CBD process. Furthermore, through introducing oxygen during the deposition of CdS, the sulfur vacancy defects generated in the vacuum deposition process are suppressed. The performance of Sb2(S,Se)3 solar cells is accordingly improved significantly. This improvement is attributed to the following aspects: i) the improved optical transmittance of CdS films. ii) The enhanced [hk1] orientation of Sb2(S,Se)3 absorber layer. iii) The improved heterojunction quality and suppressed carrier recombination. As a result, a power conversion efficiency of 8.59% for Sb2(S,Se)3 solar cells is achieved. This study provides a novel strategy for preparing electron-transporting layers for efficient chalcogenide thin-film solar cells and sheds new light on large-area solar cell applications.  相似文献   

15.
In the present communication, the binary CdSe and quaternary Cd1-xZnxSe1-ySy (0 ≤ x = y ≤ 0.35) thin films were synthesized using a chemical bath deposition. Thin film deposition was carried out at the optimized conditions (pH = 10 ± 0.1, deposition temperature = 70 ± 0.1 °C, deposition time = 100 min and substrate rotation speed = 65 ± 2 rpm). X-ray diffraction studies confirmed hexagonal-wurtzite crystal structure with the formation of quaternary Cd(Zn, S)Se phase along with binary CdSe, CdS, ZnS and ZnSe, phases of the as-grown Cd1-xZnxSe1-ySy thin films. Elemental analysis showed presence of Cd2+, Zn2+, S2- and Se2- in the deposited films. Fourier transform infrared spectroscopy shown the bands at 911.15 cm−1 – 901.62 cm−1 which are assigned to the stretching frequency of Cd–Se bond. Scanning electron microscopy show transformation of the microstructure from globular crystallites to a rhomboid flake like network. The electrical conductivity was typically ≈ 10−7 Ω1 cm−1. At low temperatures, the conduction was by variable range hopping, and this changed to thermally activated grain boundary dominated conduction for T > 350 K.  相似文献   

16.
A surface treatment by evaporated selenium on Cu(In,Ga)Se2 (CIGS) is shown to improve open circuit voltage, Voc, and in some cases fill factor, FF, in solar cells with CdS, (Zn,Mg)O or Zn(O,S) buffer layers. Voc increases with increasing amount of crystalline Se, while FF improves only for small amounts. The improvements are counteracted by a decreasing short circuit current assigned to absorption in hexagonal Se. Improved efficiency is shown for device structures with (Zn,Mg)O and Zn(O,S) buffer layers by atomic layer deposition. Analysis by grazing incidence X‐ray diffraction and photoelectron spectroscopy show partial coverage of the CIGS surface by hexagonal selenium. The effects on device performance from replacing part of the CIGS/buffer interface area by a Se/buffer junction are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports a comparative study of Cu(In,Ga)(S,Se)2 (CIGSSe) thin‐film solar cells with CBD‐CdS, CBD‐ZnS(O,OH) and ALD‐Zn(O,S) buffer layers. Each buffer layer was deposited on CIGSSe absorber layers which were prepared by sulfurization after selenization (SAS) process by Solar Frontier K. K. Cell efficiencies of CBD‐CdS/CIGSSe, CBD‐ZnS(O,OH)/CIGSSe and ALD‐Zn(O,S)/CIGSSe solar cells exceeded 18%, for a cell area of 0.5 cm2. The solar cells underwent a heat‐light soaking (HLS) post‐treatment at 170 °C under one‐sun illumination in the air; among the three condtions, the ALD‐Zn(O,S)/CIGSSe solar cells showed the highest cell efficiency of 19.78% with the highest open‐circuit voltage of 0.718 V. Admittance spectroscopy measurements showed a shift of the N1 defect's energy position toward shallower energy positions for ALD‐Zn(O,S)/CIGSSe solar cells after HLS post‐treatment, which is in good agreement with their higher open‐circuit voltage and smaller interface recombination than that of CBD‐ZnS(O,OH)/CIGSSe solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Chemical bath deposited (CBD)Zn(S,O,OH) is among the alternatives to (CBD)CdS buffer layers in Cu(In,Ga)Se2(CIGSe)‐based devices. Nevertheless, the performances reached by devices buffered with (CBD)Zn(S,O,OH) vary strongly from one sample to another and from one laboratory to another, indicating that parameters of minority impact with (CBD)CdS‐buffered devices have major influence when buffered with (CBD)Zn(S,O,OH). Moreover, the literature reports, but not systematically, the requirement of substituting the standard resistive intrinsic ZnO by (Zn,Mg)O and/or soaking the devices in ultraviolet‐containing light in order to reach optimal device operation. The present study investigates the impact of the three following parameters on the optoelectronic behavior of the Cu(In,Ga)Se2/(CBD)Zn(S,O,OH)/i‐ZnO‐based solar cells: (i) CIGSe surface composition; (ii) (CBD)Zn(S,O,OH) layer thickness; and (iii) i‐ZnO layer resistivity. The first conclusion of this study is that all of these parameters are observed to influence the electrical metastabilities of the devices. The second conclusion is that the light soaking time needed to achieve optimal photovoltaic parameters is decreased by (i) using absorbers with Cu content close to stoichiometry, (ii) increasing the buffer layer thickness, and (iii) increasing the resistivity of i‐ZnO. By optimizing these trends, stable and highly efficient Zn(S,O,OH)‐buffered CIGSe solar cells have been fabricated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Thin films of a solid solution of ZnSe and CuIn0.7Ga0.3Se2 ((ZnSe) x (CIGS) 1–x ) are prepared by co‐evaporation. Structural characterization reveals that the ZnSe and CIGS form a solid solution with no phase separation. (ZnSe)0.85(CIGS)0.15‐based photocathodes modified with Pt, Mo, Ti, and CdS exhibit a photocurrent of 7.1 mA cm?2 at 0 VRHE, and a relatively high onset potential of 0.89 VRHE under simulated sunlight. A two‐electrode cell containing a (ZnSe)0.85(CIGS)0.15 photocathode and a BiVO4‐based photoanode has an initial solar‐to‐hydrogen conversion efficiency of 0.91%, which is one of the highest values reported for a photoanode–photocathode combination. Thus, (ZnSe)0.85(CIGS)0.15 is a promising photocathode material for efficient photoelectrochemical water splitting.  相似文献   

20.
Sputtering of Zn(O,S) from ZnO/ZnS compound targets has been proven to be a promising buffer layer process for Cd‐free CIGS modules due to easy in‐line integration, low cost and high efficiency on lab scale. In this publication, we report on successful upscaling of the lab process to pilot production. A record aperture efficiency of 13.2% has been reached on a 50 × 120 cm2 sized module. Neither a non‐doped ZnO layer nor additional annealing steps are required. Moreover, this very reproducible process yields a standard deviation comparable with that of the CdS base line. In contrast to lab experiments, strong performance gain after light soaking has been observed. The light‐soak‐induced power increase depends on the preparation of the window layer. Accelerated aging tests show high stability of module power. This is confirmed by outdoor testing for 20 months. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号