共查询到20条相似文献,搜索用时 31 毫秒
1.
Tao Gong Juan Du Shang-Wei Li Hai Huang Xiao-Lang Qi 《International journal of molecular sciences》2022,23(5)
Coridius chinensis belongs to Dinidoridae, Hemiptera. Previous studies have indicated that C. chinensis contains abundant polypeptides with antibacterial and anticancer activities. Antimicrobial peptides (AMPs), as endogenous peptides with immune function, play an indispensable role in the process of biological development and immunity. AMPs have become one of the most potential substitutes for antibiotics due to their small molecular weight and broad-spectrum antimicrobial activity. In this study, a defensin CcDef2 from C. chinensis was characterized based on bioinformatics and functional analyses. The mature peptide of CcDef2 is a typical cationic peptide composed of 43 amino acid residues with five cations, and contains three intramolecular disulfide bonds and a typical cysteine-stabilized αβ motif in defensins. Phylogenetic analysis showed that CcDef2 belongs to the insect defensin family. Analysis of gene expression patterns showed that CcDef2 was expressed throughout developmental stages of C. chinensis with high levels at the nymphal stage and in adult tissues tested with the highest level in the fat body. In addition, the CcDef2 expression was significantly upregulated in adults infected by bacteria. After expressed in Escherichia coli BL21(DE3) and renatured, the recombinant CcDef2 showed a significant antibacterial effect on three kinds of Gram-positive bacteria. These results indicate that CcDef2 is an excellent antibacterial peptide and a highly effective immune effector in the innate immunity of C. chinensis. This study provides a foundation for further understanding the function of CcDef2 and developing new antimicrobial drugs. 相似文献
2.
抗菌肽是进化上保守的天然免疫应答成分并且在所有生物体中存在。其抗菌谱宽,对病原性的病毒、细菌、寄生虫和真菌等病原微生物都具有拮抗活性。来源于昆虫的抗菌肽通常是带阳离子的,一般少于100个氨基酸。昆虫抗菌肽的作用机制是通过作用其多样性的靶标来实现的,包括破坏细胞膜、作用细胞质成分和干扰代谢等,但部分昆虫抗菌肽的抗菌机制仍未完全明确,深入了解抗菌肽作用机制将推进昆虫抗菌肽药物开发。对已发现的昆虫抗菌肽的作用机制及其应用进行了综述。 相似文献
3.
Lars Steinstraesser Ursula M. Kraneburg Tobias Hirsch Marco Kesting Hans-Ulrich Steinau Frank Jacobsen Sammy Al-Benna 《International journal of molecular sciences》2009,10(9):3951-3970
Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections. 相似文献
4.
The Ribonuclease A Superfamily is composed of a group of structurally similar peptides that are secreted by immune cells and epithelial tissues. Several members of the Ribonuclease A Superfamily demonstrate antimicrobial activity, and it has been suggested that some of these ribonucleases play an essential role in host defense. Ribonuclease 7 (RNase 7) is an epithelial-derived secreted peptide with potent broad-spectrum antimicrobial activity. This review summarizes the published literature on RNase 7’s antimicrobial properties, structure, regulation, and contributions to host defense. In doing so, we conclude by highlighting key knowledge gaps that must be investigated to completely understand the potential of developing RNase 7 as a novel therapeutic for human infectious diseases. 相似文献
5.
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. 相似文献
6.
Edith Reuschel Martina Toelge Sebastian Haeusler Ludwig Deml Birgit Seelbach-Goebel Maria Emilia Solano 《International journal of molecular sciences》2021,22(1)
During pregnancy, infections caused by the gram-positive bacteria Enterococcus faecalis (E. faecalis), Streptococcus agalacticae (S. agalacticae), and Staphylococcus aureus (S. aureus) are major reasons for preterm labor, neonatal prematurity, meningitis, or sepsis. Here, we propose cytokine responses to bacterial infections by the immature perinatal immune system as central players in the pathogenesis of preterm birth and neonatal sepsis. We aimed to close the gap in knowledge about such cytokine responses by stimulating freshly isolated umbilical blood mononuclear cells (UBMC) with lysates of E. faecalis, S. agalacticae, and S. aureus collected from pregnant women in preterm labor. Bacterial lysates and, principally, S. aureus and S. agalacticae distinctly triggered most of the eleven inflammatory, anti-inflammatory, TH1/TH2 cytokines, and chemokines quantified in UBMC culture media. Chemokines depicted the most robust induction. Among them, MIP-1β was further enhanced in UBMC from female compered to male newborn infants. Due to its stability and high levels, we investigated the diagnostic value of IL-8. IL-8 was critically upregulated in cord blood of preterm neonates suffering from infections compared to gestational age-matched controls. Our results provide novel clues about perinatal immunity, underscoring a potential value of IL-8 for the timely detection of infections and suggesting that MIP-1β constitutes an early determinant of sex-specific immunity, which may contribute, e.g., to male’s vulnerability to preterm birth. 相似文献
7.
Tadsanee Awang Phoom Chairatana Ranjit Vijayan Prapasiri Pongprayoon 《International journal of molecular sciences》2021,22(22)
Human α-defensin 5 (HD5) is a host-defense peptide exhibiting broad-spectrum antimicrobial activity. The lipopolysaccharide (LPS) layer on the Gram-negative bacterial membrane acts as a barrier to HD5 insertion. Therefore, the pore formation and binding mechanism remain unclear. Here, the binding mechanisms at five positions along the bacterial membrane axis were investigated using Molecular Dynamics. (MD) simulations. We found that HD5 initially placed at positions 1 to 3 moved up to the surface, while HD5 positioned at 4 and 5 remained within the membrane interacting with the middle and inner leaflet of the membrane, respectively. The arginines were key components for tighter binding with 3-deoxy-d-manno-octulosonic acid (KDO), phosphates of the outer and inner leaflets. KDO appeared to retard the HD5 penetration. 相似文献
8.
Jacky Lu Jamisha D. Francis Miriam A. Guevara Rebecca E. Moore Dr. Schuyler A. Chambers Dr. Ryan S. Doster Dr. Alison J. Eastman Lisa M. Rogers Dr. Kristen N. Noble Dr. Shannon D. Manning Dr. Steven M. Damo Dr. David M. Aronoff Dr. Steven D. Townsend Dr. Jennifer A. Gaddy 《Chembiochem : a European journal of chemical biology》2021,22(12):2124-2133
Group B Streptococcus (GBS) is an encapsulated Gram-positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS-associated disease outcomes. 相似文献
9.
Ceřovský V Slaninová J Fučík V Monincová L Bednárová L Maloň P Stokrová J 《Chembiochem : a European journal of chemical biology》2011,12(9):1352-1361
Recently, we identified a new insect defensin, named lucifensin that is secreted/excreted by the blowfly Lucilia sericata larvae into a wound as a disinfectant during the medicinal process known as maggot therapy. Here, we report the total chemical synthesis of this peptide of 40 amino acid residues and three intramolecular disulfide bridges by using three different protocols. Oxidative folding of linear peptide yielded a peptide with a pattern of disulfide bridges identical to that of native lucifensin. The synthetic lucifensin was active against Gram-positive bacteria and was not hemolytic. We synthesized three lucifensin analogues that are cyclized through one native disulfide bridge in different positions and having the remaining four cysteines substituted by alanine. Only the analogue cyclized through a Cys16-Cys36 disulfide bridge showed weak antimicrobial activity. Truncating lucifensin at the N-terminal by ten amino acid residues resulted in a drop in antimicrobial activity. Linear lucifensin having all six cysteine residues alkylated was inactive. Circular dichroism spectra measured in the presence of α-helix-promoting compounds showed different patterns for lucifensin and its analogues. Transmission electron microscopy revealed that Bacillus subtilis treatment with lucifensin induced significant changes in its envelope. 相似文献
10.
Andrea Olmos-Ortiz Mayra Hernndez-Prez Pilar Flores-Espinosa Gabriela Sedano Addy Cecilia Helguera-Repetto
scar Villavicencio-Carrisoza María Yolotzin Valdespino-Vazquez Arturo Flores-Pliego Claudine Irles Bruno Rivas-Santiago Elsa Romelia Moreno-Verduzco Lorenza Díaz Vernica Zaga-Clavellina 《International journal of molecular sciences》2022,23(6)
An infectious process into the uterine cavity represents a major endangered condition that compromises the immune privilege of the maternal–fetal unit and increases the risk for preterm birth (PTB) and premature rupture of membranes (PROM). Fetal membranes are active secretors of antimicrobial peptides (AMP), which limit bacterial growth, such as Escherichia coli. Nevertheless, the antibacterial responses displayed by chorioamniotic membranes against a choriodecidual E. coli infection have been briefly studied. The objective of this research was to characterize the profile of synthesis, activity, and spatial distribution of a broad panel of AMPs produced by fetal membranes in response to E. coli choriodecidual infection. Term human chorioamniotic membranes were mounted in a two independent compartment model in which the choriodecidual region was infected with live E. coli (1 × 105 CFU/mL). Amnion and choriodecidual AMP tissue levels and TNF-α and IL-1β secretion were measured by the enzyme-linked immunosorbent assay. The passage of bacterium through fetal membranes and their effect on structural continuity was followed for 24 h. Our results showed that E. coli infection caused a progressive mechanical disruption of the chorioamniotic membranes and an activated inflammatory environment. After the challenge, the amnion quickly (2–4 h) induced production of human beta defensins (HBD)-1, HBD-2, and LL-37. Afterwards (8–24 h), the amnion significantly produced HBD-1, HBD-2, HNP-1-3, S100A7, sPLA2, and elafin, whereas the choriodecidua induced LL-37 synthesis. Therefore, we noticed a temporal- and tissue-specific pattern regulation of the synthesis of AMPs by infected fetal membranes. However, fetal membranes were not able to contain the collagen degradation or the bacterial growth and migration despite the battery of produced AMPs, which deeply increases the risk for PTB and PROM. The mixture of recombinant HBDs at low concentrations resulted in increased bactericidal activity compared to each HBD alone in vitro, encouraging further research to study AMP combinations that may offer synergy to control drug-resistant infections in the perinatal period. 相似文献
11.
Svetlana V. Guryanova Tatiana V. Ovchinnikova 《International journal of molecular sciences》2022,23(5)
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use. 相似文献
12.
13.
14.
Stephen Kirchner Vivian Lei Amanda S. MacLeod 《International journal of molecular sciences》2020,21(22)
The skin represents the first line of defense and innate immune protection against pathogens. Skin normally provides a physical barrier to prevent infection by pathogens; however, wounds, microinjuries, and minor barrier impediments can present open avenues for invasion through the skin. Accordingly, wound repair and protection from invading pathogens are essential processes in successful skin barrier regeneration. To repair and protect wounds, skin promotes the development of a specific and complex immunological microenvironment within and surrounding the disrupted tissue. This immune microenvironment includes both innate and adaptive processes, including immune cell recruitment to the wound and secretion of extracellular factors that can act directly to promote wound closure and wound antimicrobial defense. Recent work has shown that this immune microenvironment also varies according to the specific context of the wound: the microbiome, neuroimmune signaling, environmental effects, and age play roles in altering the innate immune response to wounding. This review will focus on the role of these factors in shaping the cutaneous microenvironment and how this ultimately impacts the immune response to wounding. 相似文献
15.
Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. 相似文献
16.
Dr. Rajen Kundu 《ChemMedChem》2020,15(20):1887-1896
Antimicrobial peptides are ubiquitous in multicellular organisms and have served as defense mechanisms for their successful evolution and throughout their life cycle. These peptides are short cationic amphiphilic polypeptides of fewer than 50 amino acids containing either a few disulfide-linked cysteine residues with a characteristic β-sheet-rich structure or linear α-helical conformations with hydrophilic side chains at one side of the helix and hydrophobic side chains on the other side. Antimicrobial peptides cause bacterial cell lysis either by direct cell-surface damage via electrostatic interactions between the cationic side chains of the peptide and the negatively charged cell surface, or by indirect modulation of the host defense systems. Electrostatic interactions lead to bacterial cell membrane disruption followed by leakage of cellular components and finally bacterial cell death. Because of their unusual mechanism of cell damage, antimicrobial peptides are effective against drug-resistant bacteria and may therefore prove more effective than classical antibiotics in certain cases. Currently, around 3000 natural antimicrobial peptides from six kingdoms (bacteria, archaea, protists, fungi, plants, and animals) have been isolated and sequenced. However, only a few of them are under clinical trials and/or in the commercial development stage for the treatment of bacterial infections caused by antibiotic-resistant bacteria. Moreover, high structural complexity, poor pharmacokinetic properties, and low antibacterial activity of natural antimicrobial peptides hinder their progress in drug development. To overcome these hurdles, researchers have become increasingly interested in modification and nature-inspired synthetic antimicrobial peptides. This review discusses some of the recent studies reported on antimicrobial peptides. 相似文献
17.
Nadin Shagaghi Andrew H. A. Clayton Marie-Isabel Aguilar Tzong-Hsien Lee Enzo A. Palombo Mrinal Bhave 《International journal of molecular sciences》2020,21(22)
Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics. 相似文献
18.
Gautam Anand Meirav Leibman-Markus Dorin Elkabetz Maya Bar 《International journal of molecular sciences》2021,22(8)
Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst. 相似文献
19.
MSc. Jessica A. I. Muller Dr. Nicole Lawrence Dr. Lai Yue Chan Dr. Peta J. Harvey Dr. Alysha G. Elliott Assoc. Prof. Mark A. T. Blaskovich Dr. Jacqueline C. Gonçalves Dr. Priscilla Galante Dr. Marcia R. Mortari Dr. Mônica C. Toffoli-Kadri Dr. Johannes Koehbach Prof. David J. Craik 《Chembiochem : a European journal of chemical biology》2021,22(8):1415-1423
Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide. 相似文献
20.
Antibiotic resistance demands innovative strategies and therapies. The pairs of antimicrobial peptides tested in this work show broad-spectrum synergy and are capable of interacting with diverse bacterial membranes. In most cases, the ATCUN motif enhanced the activity of peptides tested in combination. Our studies also show CP10A to be a multifaceted peptide, displaying both cell membrane and intracellular activity and acting as a chameleon, improving the activity of other peptides as needed. The results of the synergy experiments demonstrate the importance of varied modes of action and how these changes can affect the ability to combat pathogens, while also illustrating the value of the metal-binding domain in enhancing the activity of antimicrobial peptides in combination. 相似文献