首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of natural rubber was observed by transmission electron microscopy. Nanomatrix of non‐rubber components such as proteins and phospholipids was found to be inherently formed in natural rubber, in which natural rubber particles of about 0.5 µm in average diameter were dispersed. The nanomatrix of non‐rubber components disappeared after deproteinization of natural rubber with urea. Stress at break of serum rubber was higher than that of deproteinized natural rubber, while strain at break did not change. When the amount of the non‐rubber components increased, the stress at break became significantly dependent upon the amount of non‐rubber components. Viscoelastic properties of natural rubber were also dependent upon the nanomatrix of non‐rubber components. Storage modulus of natural rubber increased significantly, when the amount of the non‐rubber components increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrogenated deproteinized natural rubber (HDPNR) with nanomatrix structure was prepared through graft‐copolymerization of acrylonitrile and styrene onto HDPNR particle in latex stage. Structural characterization of the resulting materials through nuclear magnetic resonance and Fourier‐transform infrared spectroscopy confirmed that acrylonitrile and styrene were grafted onto HDPNR. The weather resistance, thermal properties, mechanical properties, storage modulus, and morphology of the resulting materials were investigated in comparison with those of HDPNR. The obtained result indicated that the graft‐copolymerization of HDPNR with hydrogenation conversion of 60 mol% attained the highest grafting efficiency. Thermal resistance and storage modulus of HDPNR‐graft‐poly (styrene‐co‐acrylonitrile) (HDPNR‐g‐SAN) were superior compared with those of HDPNR and deproteinized natural rubber. This was attributed to the nanomatrix formed in HDPNR‐g‐SAN, which was confirmed through a transmission electron microscope. Ribbed smoked sheet natural rubber exhibited the outstanding mechanical properties and weather resistance when it was mixed with HDPNR‐g‐SAN.  相似文献   

3.
Preparation of natural rubber (NR) with a soft nanomatrix structure was made by graft-copolymerization of butyl acrylate (BA) onto deproteinized natural rubber with tert-butyl hydroperoxide/tetraetylenepentamine in latex stage. The resulting graft-copolymer of deproteinized natural rubber and poly (butyl acrylate) (DPNR-graft-PBA) was characterized by Fourier-transform infrared spectroscopy. Conversion and grafting efficiency of BA were dependent upon BA concentration, which were more than 90?mol% under a suitable condition of the graft-copolymerization. Morphology of DPNR-graft-PBA was observed by transmission electron microscopy after staining film specimens with I2 vapor for 5?min. The NR particles of about 0.5?μm in diameter were dispersed in PBA matrix of about 15?nm in thickness. Storage modulus and loss tangent of DPNR-graft-PBA were measured, and they were related with the soft nanomatrix structure. The tensile strength and elongation at break decreased as monomer concentration increased.  相似文献   

4.
Natural rubber (NR) with an in situ nanosilica nanomatrix was characterized in present work. The in situ nanosilica nanomatrix was prepared via graft copolymerization of a silane monomer, vinyltriethoxysilane (VTES), onto deproteinized NR (DPNR) in latex stage using tetrapentamine (TEPA)/tert‐butylhydroperoxide (TBHPO) as initiators. VTES conversion of more than 80% was obtained, and it depended on VTES concentration. The graft copolymer structure was characterized by Fourier transform infrared (FT‐IR), solution‐state proton nuclear magnetic resonance (1H‐NMR), and solid‐state 29Si‐NMR spectroscopy. FT‐IR analysis of the graft copolymer confirmed the formation of in situ silica particles, while solution‐state 1H‐NMR and solid‐state 29Si‐NMR revealed the partial hydrolysis of the ethoxy groups and polycondensation of the silanol groups. The formation of nanosilica particles enhanced thermal and mechanical properties of the graft copolymer. Morphology observations of the in situ nanosilica nanomatrix through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the spherical nanosilica particles form a nanomatrix surrounding NR particle. The formation of the nanomatrix was proved to enhance mechanical properties for NR materials.  相似文献   

5.
The effect of the naturally occurring crosslinking junctions on green strength of natural rubber, isolated from Hevea brasiliensis, was investigated by using rubber extracted from Parthenium argentatum Gray (Guayule) as a model. Guayule rubber and natural rubber were characterized through nuclear magnetic resonance spectroscopy and size exclusion chromatography. The non‐rubber components of Guayule rubber and natural rubber were characterized by Kjeldahl method and Fourier transform infrared spectroscopy. It was found that Guayule rubber contains a much higher amount of fatty acids and their esters while it contains no proteins. The gel content, determined by swelling method, was related to a number of naturally occurring crosslinking junctions of Guayule rubber and natural rubber. The outstanding green strength of natural rubber was attributed to the effect of naturally occurring crosslinking junctions, when stress–strain curve and tensile properties of unvulcanized Guayule rubber were compared with those of unvulcanized natural rubber. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Formation of photoreactive nanomatrix structure was investigated by graft‐copolymerization of an inclusion complex of 1,9‐nonandiol dimethacrylate (NDMA) with β‐cyclodextrin (β‐CD) onto natural rubber particle using potassium persulfate (KPS), tert‐butyl hydroperoxide/tetraethylenepentamine (TBHPO/TEPA), cumene hydroperoxide/tetraethylenepentamine (CHPO/TEPA), and benzoyl peroxide (BPO) as an initiator. The graft copolymer was characterized by 1H NMR and FTIR after coagulation. The conversion of NDMA and the amount of residual methacryloyl group were found to be 58.5 w/w % and 1.81 w/w %, respectively, under the suitable condition of the graft‐copolymerization. The morphology of the film specimen, prepared from the graft copolymer, was observed by transmission electron microscopy (TEM) after staining the film with OsO4. Natural rubber particle of about 1.0 μm in diameter was dispersed in poly(NDMA) matrix of about 10 nm in thickness. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2418–2424, 2010  相似文献   

7.
Low‐protein natural rubber (LPNR) and acetone‐extracted natural rubber (AENR) were prepared in solid form by alkaline treatment and acetone extraction to remove proteins and lipids. The content of proteins and lipids along with gel content were characterized by Fourier‐transform infrared spectroscopy (FTIR) and size exclusion chromatography with multiangle light scattering (SEC‐MALS) analysis. It was found that natural rubber (NR) treatment by alkaline hydrolysis or acetone extraction decreased proteins or lipids along with gel content. Also, having less proteins and lipids changed the network structure from macroaggregates to microaggregates. This resulted in inferior plasticity and poor mechanical, rheological, and dynamic properties. Furthermore, decreased strain‐induced crystallization and storage hardening were confirmed by temperature scanning stress relaxation (TSSR), after removal of proteins and lipids. Therefore, protein and lipid contents together with gel content play essential roles in controlling various properties of unvulcanized NR.  相似文献   

8.
The mechanical properties of natural rubber (NR) were enhanced by the inclusion of nano‐alumina. In order to gain further insights into the reinforcement mechanism, synchrotron wide‐angle X‐ray diffraction (WAXD) was used to monitor the evolution of the molecular structure during stretching in real time, and the tube model theory was applied to study the effect of nanoparticles on rubber network. For the filled rubber, the onset strain of crystallization shifted to much lower value compared with that of the unfilled, indicating the presence of special strain amplification effect, which can be revealed by the reduction of configurational entropy. In addition, the crystallinity increased and the lateral crystallite size decreased after the addition of the nanofiller. During deformation, the crystallites of the filled rubber showed lower orientational fluctuations differing from that of NR reinforced by carbon black. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In cold climates the correct performance of rubber components such as seismic isolators depends on them maintaining their elastic properties when exposed to prolonged periods at low temperatures. The high damping compounds developed for seismic isolation are normally especially prone to crystallization when exposed to subzero temperatures for periods of a few weeks. The effect of low-temperature crystallization on the mechanical stiffening of natural rubber is evaluated. The relationship between the shear modulus and amount of crystallization is measured using a technique in which the dimensional change and stiffness are monitored simultaneously. The relationship is found to be approximately independent of the crosslink density and the temperature of crystallization. It appears not to be realistically modeled by considering the crystals to behave as rigid filler particles but good qualitative agreement with experiment was obtained by modeling the crystals as a network of threads. Partially crystalline rubbers are found to yield under the application of a large stress like other partially crystalline polymers. Mechanisms for suppressing crystallization in rubber are discussed and the low-temperature stiffening of specially formulated rubber compounds for seismic isolation is presented. These results show that carefully formulated high damping natural rubber compounds can give adequate performance at low temperatures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2181–2190, 2004  相似文献   

10.
In this study, we introduce a fabrication method for a superhydrophobic surface made from natural Eucommia rubber. Based on the Eucommia rubber extract solution, we prepared a type of superhydrophobic material using the simple phase separation method and the addition of a low‐surface‐energy substance method, thus developing a new approach for the application of natural Eucommia rubber. The experimental results showed that a superhydrophobic film could be obtained by both the addition of acetone and induction by water vapor. Additionally, the film exhibited properties closely related to the crystalline Eucommia rubber spherical particles with a hierarchical structure. The addition of hydrophobic silica also increased the hydrophobic property of the Eucommia rubber film. When the content of the silica was 4% (wt%), the contact angle of the composite film reached 160.7°, which could be attributed to the properties of the nano‐silica and the micro‐nano structure of the composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
《先进技术聚合物》2018,29(5):1456-1468
Recently, we have reported a novel core‐shell dynamic vulcanization method to prepare poly(vinylidene fluoride) (PVDF)/fluororubber (FKM)/silicone rubber (SR) thermoplastic vulcanizates (TPVs) with cross‐linked rubber core‐shell particles. However, the shell thickness on the properties has not been studied in detail. Herein, these PVDF‐based TPVs different FKM‐shell thickness were prepared by changing FKM/SR ratios. The effect of FKM‐shell/SR‐core ratio on morphology, crystallization, and mechanical properties of the ternary TPVs was studied. The results showed that the FKM shell had more positive effect on interfacial‐induced crystallization behavior than the SR core due to its better compatibility with PVDF. When the FKM/SR ratio was <1, FKM was not enough to encapsulate SR completely, which resulted in the formation of imperfect core‐shell structure. However, when the FKM/SR ratio was >1, perfect core‐shell structure was formed. Therefore, the mechanical properties improved with increasing FKM content; especially, a remarkable improvement was observed when FKM/SR ratio was >1. This study could provide more information for the design of TPVs with core‐shell structure.  相似文献   

12.
The FT-Raman spectra of natural rubber and deproteinized natural rubber are presented as a function of time cold soaking at −25°C. The changes which occur in the spectra are related to the crystallization of the sample and are compared with those reported during the stress induced crystallization of crosslinked natural rubber.  相似文献   

13.
The crystallization behavior of pure PCL and PCL in blends with crosslinked rubber particles was studied under (non)isothermal crystallization conditions, where the rubber particles were grafted with PCL chains via hydrogen abstraction of the aliphatic moieties in PCL. The crystal growth and the organization of crystals into spherulitic superstructures are significantly influenced by the presence of the grafted rubber particles, which act as an excellent nucleating agent for PCL. The nucleating efficiency shows an exponential dependency on the PCL grafting density and, according to an Avrami analysis, an increased PCL grafting density increases the overall crystallization rate of the PCL matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1438–1448, 2010  相似文献   

14.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Protein‐free natural rubber was prepared by incubation of natural rubber latex with urea and polar organic solvent in the presence of surfactant. Effect of the polar organic solvent on the removal of the proteins was investigated with respect to chemical affinity and concentration of the solvents. Under a suitable condition, nitrogen content of the deproteinized natural rubber (DPNR) was 0.000 wt%, which was less than that of natural rubber deproteinized with proteolytic enzyme or urea in the presence of surfactant. The removal of all proteins from natural rubber was proved through FT‐IR spectroscopy. Changes in morphology of the DPNR were also investigated by transmission electron microscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Mechanical properties of partially hydrogenated natural rubber (HNR) vulcanizates were evaluated regarding their chemical structure and crystallizable nature of HNR, and are reported here, to the best of our knowledge, for the first time. HNRs of three levels of hydrogenation (20.6, 29.0, and 40.6 mol%) were successfully prepared by the chemical modification of natural rubber (NR) latex using N2H4 and H2O2 as reagents, in a sufficient amount for preparing sulfur‐crosslinked samples to be subjected to mechanical and structural measurements. The three HNR vulcanizates were found to be crystallizable upon stretching; it is noted that even 40.6 mol% hydrogenation did not prevent HNR vulcanizates from crystallization upon stretching, while their onset strain of crystallization was higher than that of NR vulcanizate. The hysteresis loss and residual strain up to a stretching ratio of 2 for the HNR vulcanizates tended to become larger with the increase in the degree of the hydrogenation. Tensile and dynamic mechanical properties of 20.6 mol% hydrogenated HNR vulcanizate were comparable to those of NR vulcanizate. From differential scanning calorimetry and temperature dispersion of dynamic modulus or loss, the glass transition temperatures of HNR vulcanizates were found to be almost the same as that of NR vulcanizate, which is also notable. The thermal stability of HNR vulcanizates was better than that of NR vulcanizate. Thus, this chemical modification seems to give a promising NR derivative whose properties can be equivalent or even better than the mother polymer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In elastomer/organo clay nanocomposites, the morphological characteristics, and hence the mechanical properties, of the vulcanizates are strongly influenced by the organic modifier and the vulcanization process. When the elastomer itself undergoes strain‐induced crystallization, both the organic modifier and the dispersed filler particles could significantly influence the crystallization process. These phenomena are very common in case of natural rubber‐based vulcanizates. In this study, the similar effects have been demonstrated with carboxylated nitrile rubber (XNBR) and organically modified layered double hydroxide (O‐LDH)‐based nanocomposites. The effect of size of the organic modifier was obviously visible on the interlayer distance of O‐LDH and also on the morphological reorganization of the dispersed O‐LDH particles during vulcanization process. The strain‐induced crystallization of the XNBR was found to be strongly dependent on the morphological change that occurs during vulcanization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
This article investigates shape memory polymers (SMPs) fabricated by swelling sulfur crosslinked natural rubber with four different molten fatty acids: lauric, myristic, palmitic, and stearic acid. As inexpensive additives, they allow commodity natural rubber to be directly converted to SMPs. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty acid, at which point the recovery starts to decline with increasing wt% acid due to network failure during shape programming. The shape fixity is found to depend on the yield stress and modulus of the fatty acid network, which both increase with increasing wt% acid. The choice of fatty acid also varies the trigger temperature for shape memory, which scales with the melting point of the fatty acid. Serendipitously, it is found that alignment of the fatty acid crystals during programming produces stiffer networks whose modulus increase with applied load, which counterbalances the higher elastic energy stored in the rubber network to produce lower sensitivity of the shape fixity to the applied load. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 673–687  相似文献   

19.
Transmission electron microscopy provided direct evidence of the morphology of sulphur- and peroxide-prevulcanised natural rubber latex particles. A mesh structure of all cross-linked rubber particles containing polystyrene, prepared using the phase-transfer/bulk polymerisation process, was found. Each peroxide-prevulcanised particle had a nonuniform network structure, whereas the rubber network in sulphur-prevulcanised particles was homogeneous, irrespective of size. The effects of maturation and sodium dodecyl sulphate on the swelling ratio of the sulphur-prevulcanised latex film were investigated.  相似文献   

20.
Cuttlebone was proved to be a biomass for new reinforcing filler for natural rubber (NR). The cuttlebone particles were obtained by crushing cuttlebone and followed by sieving. Density and crystal structure of the cuttlebone were 2.70 g/cm3 and an aragonite form of CaCO3, respectively. The surface area and average diameter of the cuttlebone particles were measured and the reinforcement effect as filler for NR was investigated. The cuttlebone particles did not prevent a peroxide cross-linking reaction of NR, and mechanical properties of peroxide cross-linked NR filled with cuttlebone particles were found to be comparable with those of peroxide cross-linked NR filled with commercial CaCO3 filler. Presence of chitin on the surface of the cuttlebone particles was speculated to result in a good interaction between cuttlebone particles and NR, which may be ascribed to the mechanical properties of cuttlebone filled NR samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号