首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
梯度过渡层对硬质合金沉积类金刚石膜的耐磨性影响   总被引:1,自引:1,他引:0  
目的分析不同类型的梯度过渡层对硬质合金沉积类金刚石涂层耐磨性能的影响,制备出能有效改善硬质合金减摩抗磨性能的类金刚石涂层。方法采用真空阴极电弧离子镀和等离子体增强化学沉积技术,在硬质合金基底上制备了Ti/TiC/DLC、Ti/TiN/DLC、Ti/TiN/TiNC/DLC和Ti/TiN/TiNC/TiC/DLC四种类型的Ti多元梯度过渡类金刚石涂层。通过GNEHM-150型洛氏硬度计和电子显微镜、MFT-4000多功能材料表面性能试验仪、纳米硬度测试仪,分别评价不同类型多元梯度过渡层对硬质合金类金刚石涂层的膜基结合强度、摩擦磨损性能及纳米硬度。结果 Ti/TiC/DLC、Ti/TiN/DLC、Ti/TiN/TiNC/DLC和Ti/TiN/TiNC/TiC/DLC四种类型涂层的膜基结合强度等级分别为HF3-HF4、HF5-HF6、HF1-HF2、HF1,对两种膜基结合强度较好的涂层(Ti/TiN/TiNC/DLC、Ti/TiN/TiNC/TiC/DLC)进行摩擦磨损检测,其摩擦系数分别为0.2、0.1,且经过60 min对摩,Ti/TiN/TiNC/TiC/DLC涂层仍未出现明显剥落。结论梯度过渡层的类型对薄膜的膜基结合强度、摩擦性能有较明显的影响,Ti/TiN/TiNC/TiC/DLC结构的涂层膜基结合强度最好,具有最低的摩擦系数,表现出了优异的减摩抗磨性能,可有效改善硬质合金表面的耐磨性能。  相似文献   

2.
非平衡磁控溅射掺Ti类金刚石薄膜的结构分析   总被引:4,自引:0,他引:4  
聂朝胤  张碧云  谢红梅 《金属学报》2007,43(11):1207-1210
采用非平衡磁控溅射沉积技术在SCM415渗碳淬火钢基片上沉积了无氢Ti掺杂类金刚石(Ti-DLC)薄膜和无氢高纯类金刚石(DLC)薄膜,通过调节Ti靶的溅射功率使获得的Ti-DLC薄膜Ti含量(原子分数)为1.9%-34%.利用Raman分光光谱仪、XPS,XRD、显微硬度计及纳米划痕仪分析研究了Ti-DLC的组织结构、显微硬度及薄膜附着力.结果表明,利用非平衡磁控溅射得到的Ti-DLC薄膜,在Ti含量小于25%时,Ti-DLC薄膜仍具有类金刚石薄膜的sp2,sp3结构,但Ti的掺杂促进了sp3键向sp2键的转变.掺杂的Ti以TiC纳米晶的形式存在于非晶态的DLC中.掺杂Ti后薄膜的硬度明显降低,而薄膜附着力明显改善;但是当Ti含量超过3%后,薄膜附着力无明显变化,硬度逐渐回升.  相似文献   

3.
利用非平衡磁控溅射技术在镜面抛光的SCM415渗碳淬火钢基片上沉积了无掺杂类金刚石(DIE)薄膜和不同含量Ti掺杂类金刚石(Ti-DIE)薄膜.利用AFM、SEM、TEM对薄膜的微观结构与形貌进行了观察,利用纳米硬度计、摩擦磨损试验仪及纳米划痕仪测试了薄膜的显微硬度、摩擦系数及薄基结合强度.结果表明:随着Ti的掺杂,薄膜硬度先迅速降低,然后保持不变,在Ti含量为25at%时薄膜硬度出现回升,膜基结合强度随Ti的掺杂呈单调增强趋势.与无掺杂类金刚石薄膜相比,掺杂Ti后薄膜表面微观凸凹增多,摩擦系数增大.对于Ti-DIE薄膜来说,随着Ti掺杂量的增加,摩擦系数出现减小的趋势.其原因在于Ti掺杂量的增加使Ti-DLC薄膜变得更加致密,同时Ti的掺杂还有利于弥补基体表面的凸凹缺陷,使薄膜变得更平滑.  相似文献   

4.
利用正交设计试验探讨了基体温度、偏压、溅射时间、沉积时间对ZL109表面沉积TiN涂层时,对薄膜显微硬度和膜/基结合力的影响.结果表明,在ZL109表面多弧离子镀制备TiN薄膜的最佳工艺为:基体温度260 ℃、偏压200 V、沉积时间30 min、溅射时间8 min、Ti靶电流80 A、炉内总压1 Pa(Ar和N_2流量比为1∶2).在此工艺下制备的TiN薄膜显微硬度达到1500 HV0.05,膜/基结合力达到36 N,膜厚约2~3 μm.  相似文献   

5.
多组分缓冲层W梯度掺杂DLC复合薄膜研究   总被引:2,自引:0,他引:2  
用离子束辅助非平衡中频磁控溅射技术, 在Si, 高速钢或不锈钢基体上分别沉积得到了具有多组分过渡金属层缓冲的W梯度掺杂类金刚石碳(DLC)膜, 研究了W靶电流对DLC膜组成、结构和性能的影响. 实验表明, 随着W靶电流增大, 薄膜中W掺杂量增加, W的碳化物含量增加, sp3结构含量减少; 薄膜的纳米硬度和弹性模量逐渐增大, 且材料抗塑性参数H/E随之增大; 随W靶电流增大, 材料与基体结合力增强, 划痕实验临界载荷在80-100 N之间, 材料摩擦系数增大; 但磨损率因W掺杂而明显减小, 且随W靶电流增大而减小. 样品表面元素分布均匀, 粗糙度(Ra)较小, Ra值在7.56-15.8 nm之间.  相似文献   

6.
高结晶度CrN纳米粒子掺杂的DLC薄膜的显微结构及力学性能   总被引:3,自引:0,他引:3  
采用高功率脉冲磁控放电等离子体注入与沉积(HPPMS-PIID)和常规直流磁控溅射复合的方法设计制备了包含高结晶度的CrN纳米粒子的DLC薄膜,并对不同C靶电流时制备的CrN-DLC薄膜的形貌、结构及性能进行了研究.结果表明,随C靶电流的增加,薄膜中的含C量增加,在较高的C含量时形成了明显的DLC薄膜特征,掺杂相主要成分为高度200择优取向的CrN纳米晶,其最小晶粒尺寸为42.39 nm.薄膜中的C主要以C-sp~2,C-sp~3和CN-sp~3键的形式存在,sp~3键的总含量为sp~2总含量的44.8%.所制备的薄膜具有很好的膜基结合力(临界载荷Lc=66.8 N)和较高的纳米硬度(最高达24.3 GPa).  相似文献   

7.
采用磁控溅射沉积万法在钛锚合金基体上制备有Ti与无Ti的类金刚石(DLC)膜,全方位离子注入(PSlI)技术被用来在膜与基体之间形成过渡层,提高膜基界面的附着力.通过X射线光电子能谱、纳米压痕、摩擦磨损等表征手段比较2种薄膜的化学组成、微结构特征和力学性能.结果表明:掺Ti α-C:H膜是含有TiC纳米晶粒的复合膜结构,其中TiC晶粒的大小约是5 nm,掺Ti α-C:H膜的力学性能得到明显改善,硬度被提高到24 GPa左右,而且结合力也明显得到提高.在大气中对样品进行热处理后,再进行摩擦磨损试验,结果表明 Ti 掺杂改善了α-C:H膜的热稳足性.  相似文献   

8.
利用磁控溅射的方法成功制备Ti掺杂类石墨碳(Ti-GLC)膜。采用拉曼光谱、X射线光电子谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、纳米压痕仪和球盘式摩擦机分别表征不同Ti靶电流下制备的Ti-GLC膜的成分、结构和性能。随着Ti靶电流的增加,薄膜中sp2键的比率和Ti含量增加,同时薄膜的硬度和内应力也增大,但较高的Ti靶电流将会促使薄膜产生鳞片状结构从而使其变疏松。较少的Ti掺入量可以降低GLC膜的干摩擦因数,纯GLC膜在水润滑条件下的摩擦因数最低。在较低Ti靶电流下制备的Ti-GLC膜在干摩擦及水润滑条件下均具有较高的抗磨性能。  相似文献   

9.
为探究溅射能量对WC/a-C:H薄膜结构与性能的影响,并讨论WC掺杂对a-C:H薄膜的影响。通过非平衡磁控溅射+等离子体增强化学气相沉积法(UBMS+PACVD),以WC靶作为溅射靶,C_2H_2为反应气体,通过调制溅射靶电流,在316不锈钢基体上制备WC/a-C:H系列薄膜。用场发射电镜、透射电镜、X射线衍射仪、XPS、拉曼光谱等对薄膜的微观结构和成分进行表征,用划痕仪、纳米硬度仪测试了薄膜的力学性能,用多功能摩擦机对薄膜的摩擦学性能进行分析。结果表明:WC主要以β-WC_(1-x)纳米晶的形式均匀分布在非晶碳中,随着溅射靶电流的上升,薄膜中W含量和膜基结合力呈上升趋势,在11A时上升至21.9%(摩尔分数)和18.6 N,而I_D/I_G比值和硬度逐渐降低至0.55和11 GPa。溅射靶电流为4 A时,WC/a-C:H薄膜表现出较好的磨损性能,摩擦因数低至0.15,磨损率为5.38×10~(-7) mm~3/(N?m)。  相似文献   

10.
为研究线性离子束技术在不同基体材料上沉积DLC薄膜的结构和性能,分别在YG6硬质合金、SKD11不锈钢和T7451铝合金表面沉积DLC(类金刚石)薄膜,并采用Cr作为过渡层,缓解膜基不匹配性。通过原子力显微镜、台阶仪和Raman光谱研究薄膜的表面形貌和微观结构;利用划痕仪和摩擦磨损试验机对薄膜膜基结合强度及耐磨性进行测试。结果表明:采用该技术制备的DLC薄膜均匀光滑,表面粗糙度Ra仅为5.5nm;DLC/Cr/SKD11膜系的ID/IG值低于DLC/Cr/YG6膜系和DLC/Cr/T7451膜系,说明沉积于SKD11表面的DLC含有较多的sp3 C;DLC/Cr/SKD11和DLC/Cr/T7451膜系膜基结合强度为42.2N和23.2N,而DLC/Cr/YG6膜系在120N载荷范围内未有明显破损脱落,结合强度最好;DLC/Cr/YG6膜系摩擦因数(0.09)小于DLC/Cr/SKD11膜系(0.14)和DLC/Cr/T7451膜系(0.32),说明其具有较好耐磨性能。由此看出,不同基体上制备的DLC薄膜结构不同,结合强度和耐磨性也有所差别。  相似文献   

11.
目的研究具有选择性键合作用的掺杂金属元素(Cu、Al、Ti)对类金刚石(DLC)薄膜的结构和摩擦学性能的影响。方法以高纯石墨及其与金属复合靶作为靶材,采用离子源镀膜技术分别在n-型(100)单晶硅片和抛光304不锈钢片基体上制备金属-DLC复合膜。采用514.6 nm氩离子激发源的Raman光谱仪,对金属-DLC复合薄膜进行拉曼光谱分析。采用努氏硬度计和表面轮廓仪测量计算薄膜的硬度和残余应力。采用原子力显微镜(AFM)观察DLC薄膜的表面形貌和结构。使用球-盘滑动磨损试验机对DLC复合薄膜进行摩擦学性能分析。结果类金刚石薄膜中掺入不同金属元素掺杂后,摩擦系数保持相对稳定,但磨损率存在较大差异。无掺杂DLC膜中的sp~3键含量最高,薄膜硬度高,残余应力大,在摩擦过程中易脱落。Ti-DLC金属复合膜的表面质量最好,结构致密,残余应力释放的同时保持较高的硬度,测得其磨损率最低,为0.13×10~(-15) m~3/nm。结论通过在DLC膜中掺杂不同键合能力的金属元素能够调控DLC薄膜的微观结构,改善薄膜的力学性能(硬度、残余应力),提高薄膜的抗磨损性能。薄膜的摩擦学性能与薄膜的微观结构与金属掺杂元素的存在形态有关。  相似文献   

12.
钛掺杂无氢类金刚石薄膜疏水性能研究   总被引:2,自引:0,他引:2  
采用MEVVA离子源复合磁控溅射沉积系统,在钛合金Ti6Al4V基体上制备Ti掺杂DLC薄膜,研究Ti掺杂对DLC薄膜疏水性能的影响。通过X射线能谱仪(EDS)、X射线光电子谱(XPS)、原子力显微镜(AFM)分别对薄膜的组分、化学键以及表面形貌进行分析;通过测量静态接触角分析薄膜的润湿性并计算薄膜的表面能。结果表明:Ti掺杂DLC膜明显提高疏水性能,水接触角最高达到105°。薄膜中sp2C杂化键组分增加以及表面形成Ti-O键,是导致薄膜表面能降低的重要因素  相似文献   

13.
不同过渡层对DLC薄膜力学性能和摩擦学性能的影响   总被引:4,自引:3,他引:1  
薄膜与基体间的界面结合性能是决定薄膜性能发挥的关键要素。针对类金刚石薄膜(DLC)在硬质合金上结合力差的问题,采用线性阳极离子束复合磁控溅射技术在硬质合金YG8基体上设计制备了单层W过渡层、WC过渡层、双层W过渡层和三层W过渡层4种不同W过渡层的DLC薄膜,探讨了不同过渡层对DLC薄膜力学和摩擦学性能的影响。结果表明:不同过渡层结构的DLC薄膜结构致密,界面柱状生长随着层数增加及过渡层厚度的降低而打断,有利于改善薄膜的韧性。当为三层W过渡层时,DLC薄膜的断裂韧性达到最大值6.44 MPa·m1/2;与单层W过渡层相比,薄膜硬度有小幅下降,但薄膜内应力降低了55%,且膜/基匹配性更佳,结合强度高达85N,此时薄膜具有较低的摩擦因数和磨损率,表现出比较优异的抗磨减摩性能。  相似文献   

14.
不同掺杂对类金刚石薄膜的影响   总被引:1,自引:1,他引:0  
目的研究单掺Si和共掺Ag、Si对类金刚石薄膜的结构、摩擦学性能和耐腐蚀性能的影响。方法以高纯石墨靶、石墨与金属复合靶、Si靶作为靶材,采用射频增强磁控溅射技术制备不同掺杂种类的薄膜。通过XPS、拉曼光谱仪对薄膜的化学组成和结构进行分析,通过纳米压痕仪、摩擦磨损试验机、电化学工作站等,对薄膜的力学性能、摩擦学性能及耐腐蚀性能进行了系统研究。结果 Si元素单掺DLC会引起薄膜中sp~3C含量增加。Ag、Si共掺DLC后,由于Ag以金属相分布在薄膜中,并促进sp~2相的形成,导致sp~3C含量降低。掺杂元素后的DLC薄膜,硬度下降,但韧性提高,其中Ag、Si共掺的DLC薄膜的弹性恢复系数达到79%。此外,Ag、Si共掺DLC薄膜在多种气氛(Ar、O_2、N_2)中都具有优异的摩擦学性能,磨损寿命均超过30 min,其中在N_2气中的摩擦系数最低(0.1),并在NaCl溶液中的腐蚀电流密度比304不锈钢基体降低了近2个数量级,具有良好的耐腐蚀性。结论 Si与Ag共掺DLC薄膜较Si单掺薄膜具有更好的摩擦环境适应性和耐腐蚀性能。  相似文献   

15.
Ti-doped diamond like carbon films were deposited on both untreated and plasma nitrided Ti6Al4V alloy using Closed Field Unbalanced Magnetron Sputtering (CFUMBS) method and their tribological properties were evaluated by conducting sliding wear conditions. The influence of the nitrided layer on tribological behavior of Ti-DLC films was studied by means of XRD, SEM, scratch tester, microhardness tester and pin-on-disc tribotester. The microhardness results pointed out that the duplex treatment dramatically increased the surface hardness and reduced the plastic deformation of the alloy. Wear tests showed that Ti-DLC coatings on both untreated and nitrided surfaces caused a reduction in the coefficient of friction. The reason of the reduction in the coefficient of friction was found to be the formation of transfer film between the sliding surfaces. Wear rates demonstrated that wear resistance of duplex treated (Ti-DLC coating after nitriding) Ti6Al4V alloy was significantly improved.  相似文献   

16.
采用磁控溅射技术在钛合金(Ti6Al4V)表面制备Cr、Cr/Cr N和Cr/Cr N/Cr NC过渡层结构的类金刚石(DLC)薄膜。采用扫描电子显微镜、拉曼光谱仪与原子力显微镜分析薄膜的结构和表面形貌,利用纳米压痕仪、薄膜内应力测试仪、划痕测试仪、摩擦试验机和二维轮廓仪研究薄膜的硬度、内应力、结合力和摩擦磨损性能。结果表明:随着Cr基梯度过渡层的引入,DLC薄膜的内应力逐渐下降,结合力逐渐上升。Cr/Cr N/Cr NC/DLC薄膜具有优异减摩抗磨性能,摩擦因数和磨损率低至0.09±0.02和(1.89±0.15)×10-7 mm3/N·m。试验结果对钛合金表面高性能DLC薄膜制备及应用具有一定的参考价值和指导意义。  相似文献   

17.
利用电弧离子镀方法,对独立的Ti靶和Nb靶的弧电流进行控制,在高速钢(HSS)基体上制备了不同成分配比的(Ti,Nb)N薄膜。采用压痕试验和滑动摩擦磨损对(Ti,Nb)N薄膜的断裂行为与摩擦学性能进行了研究。试验结果显示:在较小的载荷条件下(F=300N),膜层的显微硬度起主要作用;而在较高的载荷条件下(凡=60HDN),膜层的断裂性能起主要作用。梯度薄膜在较大的载荷条件下,具有良好的滑动摩擦性能。  相似文献   

18.
目的研究摩擦速度、载荷及加热温度对Ni-P/Ti/DLC多层膜摩擦磨损性能的影响。方法用化学镀镍磷工艺在模具钢基体表面镀上Ni-P层作切削层,采用过滤阴极真空电弧(FCVA)技术分别沉积Ti过渡层和DLC保护层。通过摩擦磨损实验,评价该多层膜的摩擦磨损性能。利用纳米压痕测试和拉曼光谱检测,研究该多层膜在不同加热温度下的硬度、弹性模量和结构成分。利用扫描电镜及表面轮廓仪分别对该多层膜的磨痕形貌和横截面轮廓进行分析。结果随着摩擦速度的增大,Ni-P/Ti/DLC多层膜的摩擦系数呈下降趋势,磨损率和磨损体积呈先减后增的趋势。不同载荷下的摩擦系数变化幅度较小,磨损率和磨损体积随着载荷的增大呈增加的趋势。随着加热温度的升高,摩擦系数呈下降趋势,磨损率和磨损体积呈先增后减的趋势。此外,随着加热温度的升高,多层膜表层DLC膜中石墨相逐渐增多,硬度和弹性模量随之呈先增后减的趋势。结论较高摩擦速度下,多层膜表层DLC膜石墨化趋势增强,摩擦系数变化幅度较大,且表面磨痕宽度和深度显著增加,磨损加剧。多层膜中软质的Ti金属层和硬质的DLC层,能有效提高多层膜在高载荷下的摩擦磨损性能。随着加热温度的升高,多层膜表层DLC膜中石墨相逐渐增多,摩擦过程更易生成转移膜。  相似文献   

19.
用电弧离子镀设备,以获得超硬四面体非晶ta-C薄膜为目的,通过改变弧电流,在硬质合金基体上沉积制备了5组类金刚石DLC薄膜,主要考察弧电流对薄膜结构、性能以及获得超硬ta-C薄膜的影响规律。采用SEM、Raman、XPS、纳米压痕以及摩擦磨损仪分别表征了薄膜的形貌、结构、力学性能以及摩擦性能。结果表明:当弧电流为30 A时,薄膜表面最为平整致密、大颗粒数量最少,Raman谱的ID/IG值最小为0.87、sp3键含量最大为64%,薄膜的硬度和弹性模量最大分别为56.7 GPa和721.1 GPa、弹性恢复系数高达58.9%,且薄膜的摩擦系数最小为0.073,表明此时获得了具有优异综合性能的超硬ta-C薄膜;但随着弧电流的增加,薄膜表面变得疏松多孔、表面大颗粒增多,ID/IG增大、sp3键含量减小,薄膜的硬度H和弹性模量E逐渐减小,薄膜的摩擦系数也逐渐增大、摩擦性能大大降低,此时薄膜又归于呈现普通的性能一般的DLC薄膜特征。分析表明,若用电弧离子镀技术制备性能优异的超硬四面体非晶ta-C薄膜,需控制薄膜在较小的离子通量下沉积生长,为此需选择较小的弧电流方能实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号