首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper analyses the influence of the Cerenkov radiation and other noise sources, the so-called stem effect, on radioluminescence (RL) signals generated in optical fibre Al2O3:C dosemeters used in medical dosimetry. The optical fibre dosemeter consists of a sensitive Al2O3:C crystal coupled to an optical fibre cable that carries the RL and optically stimulated luminescence (OSL) signals generated in the Al2O3:C crystal. During irradiation of the dosemeter, the real-time dose rate can be determined from the RL signal and after irradiation the total dose absorbed is determined from the OSL signal stimulated using a focused green solid-state laser. In particular, the components of the stem effect generated in the fibres were analysed to determine their impact on the RL signal.  相似文献   

2.
Although the radioluminescence (RL) signal from optical fibre Al(2)O(3):C dosemeters used in medical applications is essentially proportional to dose rate, the crystals used so far are imperfect in the sense that their RL sensitivity changes with accumulated dose. A computational algorithm has been developed that corrects for these sensitivity changes. We further report on a new system that effectively separates the RL signal generated in the crystal from fluorescence and Cerenkov emission generated in the optical fibre cable using a gating technique in connection with pulsed linear accelerator radiation beams. The dosimetry system has been used for dose measurements in a phantom during an intensity-modulated radiation therapy (IMRT) treatment with 6 MV photons. The RL measurement results are in excellent agreement (i.e. within 1%) with both the OSL results and the dose delivered according to the treatment planning system. RL signals from Al(2)O(3):C can be used for real-time dose rate measurements with a time resolution of approximately 0.1 s and a spatial resolution only limited by the size of the detector (<0.5 mm).  相似文献   

3.
This paper presents an overview of some very recent developments in optically stimulated luminescence (OSL) dosimetry using aluminium oxide (Al(2)O(3):C), with special emphasis given to the work of the research group at Oklahoma State University. Some of the advances are: (i) the development of a real-time optical fibre system for in vivo dosimetry applied to radiotherapy; (ii) the development of a fibre dosimetry system for remote detection of radiological contaminants in soil; (iii) the characterisation of Al(2)O(3):C in heavy charged particle fields and the study of ionisation density dependence of the OSL from Al(2)O(3):C; and (iv) fast and separate assessment of beta and gamma components of the natural dose rate in natural sediments. These achievements highlight the versatility of the OSL technique associated with the high-sensitivity of Al(2)O(3):C for the development of new dosimetry applications.  相似文献   

4.
Optical fibre dosemeter systems based on radioluminescence and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al(2)O(3):C) crystals were developed for in vivo real-time dose rate and absorbed dose measurements in radiotherapy and mammography. A technique was also developed for making ultra-small dosemeter probes that can easily be placed inside patients in radiation treatment. These probes have shown excellent properties in both head and neck intensity-modulated radiation therapy treatment and in mammography. The dose-response of the OSL signal for the new optical fibre dosemeter system showed a repeatability within 0.15% at a dose level of 60 mGy when integrated over 100 s. The temperature dependence in the range 0-45 degrees C showed a reproducibility within 1.3% when the OSL signal was integrated over 100 s.  相似文献   

5.
A real-time optically stimulated luminescence (OSL) dosimetry system for potential in vivo use during radiotherapy treatments is proposed. Single-crystal europium-doped KBr samples were grown in a Bridgman furnace, and characterised using optical absorption techniques. An algorithm for the processing of the OSL signal was defined for use in real-time measurements, and its performance was studied on data obtained with a home-built reader, using optical-fibre-coupled dosemeters. OSL dose-response, fading properties and temperature dependence of the signal were investigated in correlation with the concentration of Eu(2+) dopant in the sample.  相似文献   

6.
Many synthetic materials are used as thermoluminescence dosemeters for the measurement of the absorbed dose from ionising radiation sources. A part of the absorbed energy leads to a prompt luminescence (radioluminescence, abbreviated RL) which dose behaviour mainly corresponds with the densitity of charge carriers in the respective traps or recombination sites. The RL reported in this study was stimulated using two 137Cs sources with activities of 3.7 MBq (spectral measurements) or 5 MBq (dosimetry studies), respectively, and was recorded steadily during stimulation. This presentation gives a comprehensive survey of the spectral and dose dependent RL properties of a number of luminescent materials like LiF:Mg,Ti, Al2O3:C, CaSO4:Dy, CaF2:Mn, Li2B4O7:Mn, BeO and ZnS:Ag. The spectral and dose dependent results were compared with thermoluminescence as well as other RL studies.  相似文献   

7.
This article proposes an innovative multichannel optically stimulated luminescence (OSL) dosemeter for on-line in vivo dose verification in radiation therapy. OSL fibre sensors incorporating small Al(2)O(3):C fibre crystals (TLD(500)) have been tested with an X-ray generator. A reproducible readout procedure should reduce the fading-induced uncertainty ( approximately - 1% per decade). OSL readouts are temperature-dependent [ approximately 0.3% K(-1) when OSL stimulation is performed at the same temperature as irradiation; approximately 0.16% K(-1) after thermalisation (20 degrees C)]. Sensor calibration and depth-dose measurements with electron beams have been performed with a Saturne 43 linear accelerator in reference conditions at CEA-LNHB (ionising radiation reference laboratory in France). Predosed OSL sensors show a good repeatability in multichannel operation and independence versus electron energy in the range (9, 18 MeV). The difference between absorbed doses measured by OSL and an ionisation chamber were within +/-0.9% (for a dose of about 1 Gy) despite a sublinear calibration curve.  相似文献   

8.
The dose ranges typical for radiation oncology and nuclear accident dosimetry are on the order of 2-70 Gy and 0.1-5 Gy, respectively. In terms of solid-state passive dosimetry, thermoluminescent (TL) materials historically have been used extensively for these two applications, with silver-halide, leuco-dye and BaFBr:Eu-based films being used on a more limited basis than TL for radiation oncology. This present work provides results on the performance of a film based on an aluminum oxide, Al(2)O(3):C, for these dosimetry applications, using the optically stimulated luminescence (OSL) readout method. There have been few investigations of Al(2)O(3):C performance at radiation oncology and nuclear accident dose levels, and these have included minimal dosimetric and environmental effects information. Based on investigations already published, the authors of this present study determined that overall improvements over film and TLDs for this Al(2)O(3):C OSL technology at radiation oncology and nuclear accident dose levels may include (1) a more tissue-equivalent response to photons compared to X-ray film, (2) higher sensitivity, (3) ability to reread dosemeters and (4) diagnostic capability using small-area imaging. The results of the present investigation indicate that additional favourable performance characteristics for the Al(2)O(3):C dosemeter are a wide dynamic range (0.001-100 Gy), a response insensitive to temperature and moisture over a wide range, negligible dose rate dependence, and minimal change in post-irradiation response. As a radiation detection medium, this OSL phosphor offers an assortment of dosimetry properties that will permit it to compete with current radiation detection technologies such as silver-halide, leuco-dye and photostimulable-phosphor-based films, as well as TLDs.  相似文献   

9.
This paper presents two different approaches of quantifying the optically stimulated luminescence (OSL) response of Al(2)O(3):C to high-energy heavy charged particles (HCPs). The OSL efficiency of Al(2)O(3):C exposed to different HCPs is defined as the sensitivity of the material to HCPs normalised by the sensitivity to gamma. In this paper, we investigate the possibility of introducing a 'mean efficiency' eta(mean), which when used in conjunction with the total gamma dose D(gamma) measured for a mixed radiation exposure allows for the determination of the absorbed dose without the need to determine the individual contributions of different types of radiation to the OSL signal. We tested the hypothesis that information regarding the 'mean efficiency' eta(mean) is contained in the shape of the OSL decay curve, using several approaches in the analysis of the OSL data. This analysis was applied to various mixed field irradiations performed at the HIMAC facility, Chiba, Japan. The results of this analysis are discussed.  相似文献   

10.
The characteristics of thermoluminescence (TL) and optical stimulated luminescence (OSL) in undoped alpha-Al2O3 single crystals were studied. The TL glow curves of the crystal samples irradiated at various dose levels were measured by Ris? TL/OSL-DA-15B/C reader with U-340 or 7-59 filters at different heating rates. The glow peaks measured with U-340 at approximately 210 degrees C of the undoped alpha-Al2O3 can be well fitted by first-order kinetic equation whereas the glow peaks measured with 7-59 filters are a composite of two first-order glow peaks. It indicates that the TL glow curves are dependent upon the filter used in the reader that is related to the emission spectra of luminescence materials. The OSL were also measured and fitted by two exponential functions to get the luminescence intensities. The TL and OSL dose responses of the undoped alpha-Al2O3 crystal were obtained in the dose range of 0.12-248 Gy and fitted by the composite action dose-response function to get nonlinear characteristic parameters. The TL and OSL dose responses are linear-sublinear.  相似文献   

11.
In a previous experimental study, a novel method for in vivo dosimetry has been investigated, based on radioluminescence (RL) and optically stimulated luminescence (OSL). However, because of the large difference in atomic composition between the detector material and the breast tissue, relatively large energy dependence in low-energy X-ray beams can be expected. In the present work, the energy dependence of Al2O3:C crystals was modelled with the Monte Carlo code EGSnrc using three types of X-ray spectra. The results obtained (5.6-7.3%) agree with a previously determined experimental result (9%) within the combined standard uncertainty of the two methods. The influence of the size of the crystal on the energy dependence was investigated together with the effect of varying the thickness of the surrounding light-protective material. The results obtained indicate a minor effect owing to the thickness of the light-protective material, and a somewhat larger effect from reducing the diameter of the crystal. The outcome of this study can be used to improve the future design of the RL/OSL dosimetry system for use in mammography.  相似文献   

12.
The ceramic material AlN-Y2O3 is proposed as a potential ultraviolet radiation (UVR) dosemeter using optically stimulated luminescence (OSL) and thermally stimulated luminescence (TL). Experimental studies have shown that AIN ceramics exhibit attractive characteristics suitable for practical UV dosimetry applications. The features are: (1) the spectral sensitivity covers the 200-350 nm range, in the UV-B region it is similar to that of human skin; (2) the angular dependence of the incident radiation follows the cosine law; (3) high yields of both UVR-induced OSL and TL signals compared to those of Al2O3:C; and (4) a large dynamic range TL signal (5 orders of magnitude). Although there is relatively high fading, it is demonstrated that AIN is a feasible material for UVR dosimetry using short integration times.  相似文献   

13.
In this paper main optically stimulated luminescence (OSL) and thermoluminescence (TL) characteristics are presented of a newly synthesised material MgO doped with terbium (Tb) developed at the Institute of Nuclear Science, Vinca. A thermally stimulated emission spectrum showed the characteristic lines of Tb3+ in a wide range of wavelengths. The TL sensitivity of the main TL glow peak at 315 degrees C is 1.7 times higher than the TL of Al2O3:C. The highest OSL sensitivity was obtained under green lamp (500-570 nm) stimulation. The fast component in the OSL decay curve is 2.4 times faster than Al2O3:C. The OSL signal is linear with dose up to 10 Gy. The lower limit of detection was found to be 100 microGy. These first results show that the newly synthesised material has some promising properties for the application in radiation dosimetry.  相似文献   

14.
We have developed a system to irradiate samples and record radioluminescence (RL), optically stimulated luminescence (OSL), and thermoluminescence (TL) at temperatures ranging from -150 degrees C to 200 degrees C. The system consists of a cryostat, an irradiation/stimulation unit fitted with an X-ray tube (40 kV Moxtek) and a quartz window for optical stimulation, and a detection unit that utilises a photomultiplier tube and an interchangeable filter pack. Experiments have been conducted with quartz and albite (a feldspar). TL and OSL experiments show that several optically sensitive trapping states are stable below -50 degrees C. In addition, an increase in OSL is seen as the OSL stimulation temperature is lowered below -50 degrees C, and an increase in RL is apparent as the temperature is lowered during irradiation. This indicates that not only are optically sensitive low temperature traps present but that luminescence becomes more efficient at low temperatures.  相似文献   

15.
Strong optically stimulated luminescence (OSL), stimulated by blue light, has been observed, for the first time, in natural calcium fluoride (CaF(2)) phosphor, used as thermoluminescence dosemeters. Traps responsible for all three thermoluminescence (TL) peaks appearing upto 300 degrees C, i.e. 126, 196 and 264 degrees C, were observed to contribute to the blue light stimulated luminescence (BLSL) in CaF(2). When the areas under the respective curves (BLSL and TL) were measured, the BLSL measured at room temperature was found to be approximately 1.8 times the TL output of the dosimetry peak that appeared at approximately 264 degrees C. However, when measured after thermally annealing the first two TL peaks, the BLSL signal was found to be 0.26 times the TL output of the dosimetry peak at 264 degrees C. This paper describes the characteristics of the BLSL signal using linearly modulated OSL after subjecting the phosphor to different annealing treatments. Feasibility studies to assess the usefulness of BLSL in CaF(2) for environmental radiation monitoring are also discussed.  相似文献   

16.
Optically stimulated luminescence (OSL) 'dot' dosemeters (manufactured by Landauer?) are reported to have a high degree of environmental stability, high level of sensitivity and provide wide range of dose measuring capabilities from 0.05 mGy to 100 Gy. The optical read out method is fast and relatively simple and permits repeated read out, but few studies have been performed about its application in monitoring radiation in the environment. This study was initiated to independently test the performance of OSL dot dosemeters for the application of measuring doses of radiation in the outdoor environment. Testing was performed in the laboratory to evaluate reproducibility and stability and in the field to evaluate accuracy relative to calibrated high-pressure ionisation chambers. The results showed that OSL dot dosemeters had good reproducibility and stability in both laboratory and field tests and met the performance requirements of standards of the American National Standards Institute.  相似文献   

17.
Optically stimulated luminescence (OSL) from Al2O3:C (ALOC) irradiated with selected heavy ions (4He, 12C, 40Ar, and 56Fe) was examined for discussion on the effectiveness of ALOC for space radiation protection dosimetry. The OSL efficiency on the absorbed dose basis was almost unity for He (LETinfinity x H2O: 2.2 keV x microm(-1)) and decreased with increasing LET for C (14 keV x microm(-1)), Ar (91 keV x microm(-1)), and Fe (198 keV x microm(-1)); a notable reduction greater than 60%, was observed for Fe ions. The linearity in dose response and the angular independence for the heavy ions were fairly good (+/- <15%) Although further experimental studies are clearly necessary, these results suggest that small ALOC chips can be a part of an integrating dosimetry system in future space missions.  相似文献   

18.
Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.  相似文献   

19.
The neutron response was characterised for Al(2)O(3):C material coated with (6)Li(2)CO(3). Al(2)O(3):C material, an optically stimulated luminescent (OSL) dosemeter, which is sensitive to both photons and beta radiation but is mostly insensitive to neutron radiation. The Al(2)O(3):C material was coated with (6)Li(2)CO(3) to create a material sensitive to neutrons, beta and photon radiation. In this paper, the neutron response of this new OSL material (OSLN) will be compared with various other neutron measurement technologies in laboratory and field environments.  相似文献   

20.
This paper presents an overview of recent results on ionisation density dependence of the thermally stimulated luminescence (TL) and optically stimulated luminescence (OSL) signals from Al2O3:C, with emphasis on the sensitivity, efficiency, shape of the TL/OSL curves and the emission spectrum. High-ionisation densities are created uniformly by accumulated high doses of low-linear energy transfer radiation (gamma, beta, X rays) or non-uniformly in heavy charged particle tracks, even at low fluences, as in the case of space radiation fields. Significant deep trap filling, which occurs at these high-ionisation densities, ultimately results in changes in the concentration of recombination centres (F+-centres) and, consequently, in sensitivity changes and other effects. An OSL emission band at 335 nm has been observed in addition to the main F-centre luminescence band, and the relative intensities of these bands have been observed to be dependent on the ionisation density. The implications of these results and open issues are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号