首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
建立了快脉冲磁芯损耗特性测试平台,对比研究了50 m的DG6硅钢和25 m的2605TCA非晶两种材料磁芯损耗特性;采用一种新的特征参量(磁芯单位面积上激磁电压陡度)来规范磁芯的激磁电压条件,使得实验结果与快放电直线型变压器驱动源实际工作条件下磁芯性能具有可比性;通过测量初级漏电流及次级开路电压,获得了相同激磁条件下两种磁芯等效损耗电阻的大小,50 m 的DG6硅钢磁芯损耗约为25 m的2605TCA非晶磁芯损耗的4倍;计算了两种材料磁芯总损耗中涡流损耗所占的比例,50 m的DG6硅钢磁芯涡流损耗占总损耗的75%,25 m的2605TCA非晶磁芯涡流损耗占总损耗的28%。  相似文献   

2.
针对25 μm 2605TCA非晶涂层、25 μm 2605SA1非晶夹膜和50 μm DG6硅钢夹膜三种材料和工艺磁芯,对比研究了不同激磁条件下的磁化特性。结果表明:改变磁芯激磁条件,磁通密度变化量(ΔB)几乎不变,DG6硅钢夹膜磁芯和2605TCA非晶涂层磁芯ΔB均为3.1 T,2605SA1非晶夹膜磁芯ΔB仅为2.4 T;不同激磁条件下,相对磁导率变化较为明显,三种磁芯相对磁导率均随激磁特征参数的增加而迅速减小,当激磁特征参数由67 V/(cm2·ns)增加至129 V/(cm2·ns)时,2605SA1非晶夹膜磁芯最大相对磁导率由1800减小至1200,2605TCA非晶涂层磁芯最大相对磁导率由1100减小至400,相同激磁特征参数下2605TCA非晶涂层磁芯相对磁导率小于2605SA1非晶夹膜磁芯相对磁导率;DG6硅钢夹膜磁芯在快脉冲条件下磁化性能较差,最大相对磁导率仅为130。  相似文献   

3.
快脉冲直线型变压器驱动源同步触发系统   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种基于单传输线脉冲成形技术的模块化快脉冲直线型变压器驱动源的同步触发系统的概念设计,主要由级数较少的Marx发生器、脉冲形成线、主开关、脉冲传输线及触发引出电缆等组成。利用等效电路模型,研究了Marx发生器与脉冲形成线的配合关系,当发生器同时驱动多路形成线时,可以有效增加触发脉冲的数量,并能提高能量利用效率,但触发脉冲的幅值会降低。研究了水介质线阻抗与引出电缆数量对触发脉冲的影响,结果表明:随着电缆序号的增加,触发脉冲的幅值逐渐降低,并且水介质线的阻抗越高,幅值降低的速度越快。触发脉冲也可同时引出,驱动单路形成线输出60路时,触发脉冲的峰值约为293 kV,前沿约11 ns;当驱动5路形成线输出300路时,触发脉冲的峰值约为151 kV,前沿约11 ns。  相似文献   

4.
提出了一种基于单传输线脉冲成形技术的模块化快脉冲直线型变压器驱动源的同步触发系统的概念设计,主要由级数较少的Marx发生器、脉冲形成线、主开关、脉冲传输线及触发引出电缆等组成。利用等效电路模型,研究了Marx发生器与脉冲形成线的配合关系,当发生器同时驱动多路形成线时,可以有效增加触发脉冲的数量,并能提高能量利用效率,但触发脉冲的幅值会降低。研究了水介质线阻抗与引出电缆数量对触发脉冲的影响,结果表明:随着电缆序号的增加,触发脉冲的幅值逐渐降低,并且水介质线的阻抗越高,幅值降低的速度越快。触发脉冲也可同时引出,驱动单路形成线输出60路时,触发脉冲的峰值约为293 kV,前沿约11 ns;当驱动5路形成线输出300路时,触发脉冲的峰值约为151 kV,前沿约11 ns。  相似文献   

5.
直线型脉冲变压器模块的响应特性   总被引:2,自引:2,他引:0       下载免费PDF全文
介绍了短脉冲应用中磁芯的选取,设计了一台两路并联馈电的单模块直线型脉冲变压器驱动源(LTD)装置。在低压情况下测试了装置对不同脉宽信号的响应特性,在此基础上利用一级脉冲形成网络提供的输出阻抗约5 Ω,脉宽约3 μs的近似方波信号对装置进行了高压实验,得到了匹配负载情况下LTD次级上的输出电压波形,和脉冲形成网络的输出波形得到了很好的吻合。建立了相应的LTD电路模型,利用Laplace变换推导了模型对有限上升前沿脉冲的响应,证明了励磁电感偏小是造成实验中LTD装置输出电压幅值明显低于充电电压的主要原因,提出了改进方法并进行了实验验证。  相似文献   

6.
基于已经研制完成的100 kV/100 kA快脉冲直线型变压器驱动源(LTD)原型模块,设计研制了输出电压/电流分别为1 MV/100 kA(功率为100 GW)的快脉冲LTD装置。装置由10级100 kV/100 kA快脉冲LTD模块串联而成,总储能为20 kJ,装置直径约1.5 m,长度约2.2 m。最终在85 kV充电电压下,二极管负载上获得的电流约为116 kA,电压约为1.1 MV,电压上升时间53 ns,电压脉宽146 ns,二极管阻抗约为9.4 。  相似文献   

7.
基于已经研制完成的100 kV/100 kA快脉冲直线型变压器驱动源(LTD)原型模块,设计研制了输出电压/电流分别为1 MV/100 kA(功率为100 GW)的快脉冲LTD装置。装置由10级100 kV/100 kA快脉冲LTD模块串联而成,总储能为20 kJ,装置直径约1.5 m,长度约2.2 m。最终在85 kV充电电压下,二极管负载上获得的电流约为116 kA,电压约为1.1 MV,电压上升时间53 ns,电压脉宽146 ns,二极管阻抗约为9.4 。  相似文献   

8.
分析了快脉冲直线型变压器驱动源(FLTD)气体开关触发击穿延时的分布规律,利用MAT-LAB软件生成随机序列模拟开关击穿延时和抖动,在FLTD简化二阶电路的基础上,利用MATLAB分析了开关抖动对40个支路并联1 MA,100 ns FLTD模块输出电流脉冲前沿和幅值的影响。模拟计算结果表明:开关理想时,即抖动为0,输出电流峰值为996 kA,峰值时间为90 ns,10%~90%脉冲前沿为54 ns;开关自身抖动与开关之间分散性之和为10 ns时,输出电流脉冲前沿增加约14%,电流峰值下降约2%;开关自身抖动与开关之间分散性之和为20 ns时,输出电流脉冲前沿增加约38%,电流峰值下降约5%。  相似文献   

9.
分析了快脉冲直线型变压器驱动源(FLTD)气体开关触发击穿延时的分布规律,利用MATLAB软件生成随机序列模拟开关击穿延时和抖动,在FLTD简化二阶电路的基础上,利用MATLAB分析了开关抖动对40个支路并联1 MA,100 ns FLTD模块输出电流脉冲前沿和幅值的影响。模拟计算结果表明:开关理想时,即抖动为0,输出电流峰值为996 kA,峰值时间为90 ns,10%~90%脉冲前沿为54 ns;开关自身抖动与开关之间分散性之和为10 ns时,输出电流脉冲前沿增加约14%,电流峰值下降约2%;开关自身抖动与开关之间分散性之和为20 ns时,输出电流脉冲前沿增加约38%,电流峰值下降约5%。  相似文献   

10.
介绍了输出电流幅值为1 MA,电流上升时间为100 ns的快脉冲直线型变压器驱动源(LTD)模块的设计。模块由48个子块并联组成,每个子块由2个电容器和一个多级气体开关串联组成。48个开关由8路高压脉冲触发,每路高压脉冲(100 kV/50 ns)触发6个开关。电路模拟显示,在充电 90 kV条件下,输出电流幅值为1.04 MA,电流上升时间为84.5 ns(0~100%)和52 ns(10%~90%)。电路模拟时的参数设置以实验数据为基础,开关的工作条件与已研制成功的100 kA-LTD模块中的开关工作条件近似,模块设计工作于腔体注油状态以保证高压运行安全,能够保证模块达到设计要求。  相似文献   

11.
 磁芯是直线变压器驱动源(LTD)的关键部件之一,起着初、次级能量传递和次级电压感应叠加的作用,磁芯的能量传递效率对LTD系统的效率、体积和重量影响显著。对LTD系统中影响磁芯能量传递效率的原因进行了初步的分析,并利用Pspice软件的非线性磁芯模型对磁芯的工作过程和损耗进行了模拟计算,最后对LTD磁芯的能量传递效率进行了初步的实验研究,在工作电压为20 kV时、脉宽约220 ns时,在2.8 Ω负载上获得了大于60%的能量传递效率。  相似文献   

12.
磁芯是直线变压器驱动源(LTD)的关键部件之一,起着初、次级能量传递和次级电压感应叠加的作用,磁芯的能量传递效率对LTD系统的效率、体积和重量影响显著。对LTD系统中影响磁芯能量传递效率的原因进行了初步的分析,并利用Pspice软件的非线性磁芯模型对磁芯的工作过程和损耗进行了模拟计算,最后对LTD磁芯的能量传递效率进行了初步的实验研究,在工作电压为20 kV时、脉宽约220 ns时,在2.8 Ω负载上获得了大于60%的能量传递效率。  相似文献   

13.
脉冲磁化条件下非晶磁芯的损耗特性   总被引:1,自引:0,他引:1       下载免费PDF全文
基于工频或高频磁化条件下磁芯的测试数据不能准确反映磁芯在单次脉冲磁化下的性能,给出了一种脉冲磁化条件下磁芯性能的测试方法和数据处理方法,实验研究了快脉冲磁化条件下非晶态合金磁芯的损耗特性,磁芯最短饱和时间67 ns,最大磁化速率达到40 T/s。通过数据处理,给出了磁芯损耗与磁化速率的关系曲线,获得了不同磁化速率下磁芯的损耗数据。分析了脉冲磁化条件下涡流损耗和磁滞损耗所占的比例。研究结果表明:脉冲磁化条件下非晶态合金磁芯损耗与磁化速率关系符合饱和波模型,磁芯损耗随磁化速率增大而线性增大。  相似文献   

14.
基于工频或高频磁化条件下磁芯的测试数据不能准确反映磁芯在单次脉冲磁化下的性能,给出了一种脉冲磁化条件下磁芯性能的测试方法和数据处理方法,实验研究了快脉冲磁化条件下非晶态合金磁芯的损耗特性,磁芯最短饱和时间67 ns,最大磁化速率达到40 T/s。通过数据处理,给出了磁芯损耗与磁化速率的关系曲线,获得了不同磁化速率下磁芯的损耗数据。分析了脉冲磁化条件下涡流损耗和磁滞损耗所占的比例。研究结果表明:脉冲磁化条件下非晶态合金磁芯损耗与磁化速率关系符合饱和波模型,磁芯损耗随磁化速率增大而线性增大。  相似文献   

15.
分析了直流叠加脉冲电压(定义为复合电压)下次级感应电压触发快脉冲直线变压器驱动源(FLTD)中气体开关击穿延时过程,给出了击穿延时的估算公式。初步实验研究了FLTD用三电极气体开关在复合电压作用下的击穿特性,结果表明:在±70kV直流充电电压叠加300kV/30ns快脉冲电压的复合电压作用下,气体开关的击穿延时小于相同工作系数下常规触发方式的击穿延时,采用SF6气体绝缘时,击穿延时较常规触发方式减小了17%~30%;采用N2绝缘时,减小了约50%,开关工作系数为55%时,击穿延时抖动小于5ns;理论估算的复合电压下击穿延时与实测结果基本吻合。  相似文献   

16.
分析了直流叠加脉冲电压(定义为复合电压)下次级感应电压触发快脉冲直线变压器驱动源(FLTD)中气体开关击穿延时过程, 给出了击穿延时的估算公式。初步实验研究了FLTD用三电极气体开关在复合电压作用下的击穿特性, 结果表明:在70 kV直流充电电压叠加300 kV/30 ns快脉冲电压的复合电压作用下, 气体开关的击穿延时小于相同工作系数下常规触发方式的击穿延时, 采用SF6气体绝缘时, 击穿延时较常规触发方式减小了17%~30%;采用N2绝缘时, 减小了约50%, 开关工作系数为55%时, 击穿延时抖动小于5 ns;理论估算的复合电压下击穿延时与实测结果基本吻合。  相似文献   

17.
实现惯性约束聚变(ICF)和高产额(high yield,HY)要求脉冲驱动电流峰值达到约60 MA,采用类似SATURN和Z装置等传统的技术途径进一步提高驱动电流,从装置造价、结构复杂性和运行可靠性等方面看都具有相当大的难度,因此,需要发展新的短脉冲大电流驱动源技术,解决快Z箍缩技术发展的瓶颈。概述了国际上快Z箍缩驱动源技术的研究现状和趋势,介绍了有代表性的ICF/HY等离子体辐射源(plasma radiation source 简称PRS)或威胁级大型X射线模拟源初步概念设计、拟采用的技术途径,如俄罗斯大电流所(HCEI)基于FLTD(fast linear transformer driver)技术的直接驱动源、美国基于FLTD的新SATURN驱动源和基于FMG(fast Marx generator)技术的快Z箍缩驱动源,提出了快Z箍缩直接驱动源需要发展的关键技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号