首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Fractional green vegetation cover (FVC) is a useful indicator for monitoring grassland status. Satellite imagery with coarse spatial but high temporal resolutions has been preferred to monitor seasonal and inter-annual FVC dynamics in wide geographic area such as Mongolian steppe. However, the coarse spatial resolution can cause a certain uncertainty in the satellite-based FVC estimation, which calls attention to develop a robust statistical test for the relationship between field FVC and satellite-derived vegetation indices. In the arid and semi-arid Mongolian steppe, nadir pointing digital camera images (DCI) were collected and used to produce a FVC dataset to support the evaluation of satellite-based FVC retrievals. An optimal DCI processing method was determined with respect to three color spaces (RGB, HIS, L*a*b*) and six green pixel classification algorithms, from which a country-wide dataset of DCI-FVC was produced and used for evaluating the accuracy of satellite-based FVC estimates from MODIS vegetation indices. We applied three empirical and three semi-empirical MODIS-FVC retrieval models. DCI data were collected from 96 sites across the Mongolian steppe from 2012 to 2014. The histogram algorithm using the hue (H) value of the HIS color space was the optimal DCI method (r2 = 0.94, percent root-mean-square-error (RMSE) = 7.1%). For MODIS-FVC retrievals, semi-empirical Baret model was the best-performing model with the highest r2 (0.69) and the lowest RMSE (49.7%), while the lowest MB (+1.1%) was found for the regression model with normalized difference vegetation index (NDVI). The high RMSE (>50% or so) is an issue requiring further enhancement of satellite-based FVC retrievals accounting for key plant and soil parameters relevant to the Mongolian steppe and for scale mismatch between sampling and MODIS data.  相似文献   

2.
IntroductionVegetation distribution and change is regardedas ani mportant sign of urban environment . Withcity expanding and population increasing, herecomes a series of problems on environment ,andmoreover ,greening ratio is regarded as a stand-ard of ci…  相似文献   

3.
Because of complex change in urban areas, modified CVA application based on mask techniques can minify the effect of non-vegetation changes and improve upon efficiency to a great extent. Moreover, drawing from methods in polar plots, the technique measures changes with absolute angular and total magnitude of PVI calculated on the basis of linear fit with least-square estimation and GVI calculated using 3D G-S transformation. Finally, this application is performed with Landsat ETM+ imageries of Wuhan in 2002 and 2005, and assessed by error matrix, in the way it could detect change pixels 94.91% correct, and the total consistent coefficient Kappa and could reach to 0.85. The evaluation result demonstrates this new application trends as an efficient and effective alternative to urban vegetation change extraction.  相似文献   

4.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

5.
The common spectra wavebands and vegetation indices (VI) were identified for indicating leaf nitrogen accumulation (LNA), and the quantitative relationships of LNA to canopy reflectance spectra were determined in both wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The 810 and 870 nm are two common spectral wavebands indicating LNA in both wheat and rice. Among all ratio vegetation indices (RVI), difference vegetation indices (DVI) and normalized difference vegetation indices (NDVI) of 16 wavebands from the MSR16 radiometer, RVI (870, 660) and RVI (810, 660) were most highly correlated to LNA in both wheat and rice. In addition, the relations between VIs and LNA gave better results than relations between single wavebands and LNA in both wheat and rice. Thus LNA in both wheat and rice could be indicated with common VIs, but separate regression equations are better for LNA monitoring.  相似文献   

6.
Land-cover change may affect water and carbon cycles when transitioning from one land-cover category to another (land-cover conversion, LCC) or when the characteristics of the land-cover type are altered without changing its overall category (land-cover modification, LCM). Given the increasing availability of time-series remotely sensed data for earth monitoring, there has been increased recognition of the importance of accounting for both LCC and LCM to study annual land-cover changes. In this study, we integrated 1,513 time-series Landsat images and a change-updating method to identify annual LCC and LCM during 1986–2015 in the coastal area of Zhejiang Province, China. The purpose was to quantify their contributions to land-cover changes and impacts on the amount of vegetation. The results show that LCC and LCM can be successfully distinguished with an overall accuracy of 90.0%. LCM accounted for 22% and 40.5% of the detected land-cover changes in reclaimed and inland areas, respectively, during 1986–2015. In the reclaimed area, LCC occurred mostly in muddy tidal flats, construction land, aquaculture ponds, and freshwater herbaceous land, whereas LCM occurred mostly in freshwater herbaceous land, Spartina alterniflora, and muddy tidal flats. In the inland area, both LCC and LCM were concentrated in forest and dryland. Overall, LCC had a mean magnitude of normalized difference vegetation index (NDVI) change similar to that of LCM. However, LCC had a positive effect and LCM had a negative effect on NDVI change in the reclaimed area. Both LCC and LCM in the inland area had negative impacts on vegetation greenness, but LCC resulted in larger NDVI change magnitude. Impacts of LCC and LCM on vegetation greenness were quantified for each land-cover type. This study provided a methodological framework to take both LCC and LCM into account when analyzing land-cover changes and quantified their effects on coastal ecosystem vegetation.  相似文献   

7.
利用带大气估计模型的时序InSAR方法对24幅覆盖北京及河北廊坊的Envisat-ASAR影像数据进行了时序分析,获取了该地区2007年4月—2010年9月的地面沉降速率及均方差。发现了以北京朝阳区和通州区交界处为中心和以河北廊坊城区为中心的两个沉降区域,中心区平均沉降速率分别为35mm/a与22mm/a。研究区域形变速率均方差1.5mm/a。研究结果表明:利用时序InSAR技术进行城市地表沉降监测具有较好的精度及稳定性;产生该沉降的可能原因为地下水的开采、城市基础建设的发展及工业用地量、人为活动的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号