首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
分布式光纤传感器的周界安防入侵信号识别   总被引:3,自引:2,他引:1  
罗光明  李枭  崔贵平  钟喆 《光电工程》2012,39(10):71-77
在分布式光纤周界安防系统中,对距离较长、背景环境复杂的边境进行检测时,系统根据光缆沿线发生的事件进行识别.为了区分各种引起光缆振动的激励,本文根据入侵信号与环境引起的振动信号在小波尺度上方差幅值的分布特征,利用小波多尺度分析理论构造了由各尺度下的方差组成的特征向量,提出了根据方差特征向量的不同来识别各种振动信号的“尺度-方差”信号的方法.在实验系统中,光缆总长度为56 km,光源的功率为300 μW,工作波长为1 550 nm.实验结果表明,此方法可以有效区分入侵信号、环境噪声和人为活动引起的非入侵事件,提高了系统的检测概率和降低系统的虚警率.  相似文献   

2.
由于往复压缩机振动信号具有非平稳和低信噪比特点,利用传统的时域或频域分析方法很难提取到反应压缩机的运行状况有效特征。压缩机发生故障时,信号能量沿频率的分布与正常状态有较大差异,本文利用小波包对非平稳信号的分解和时域重构能力,提出一种基于小波包分析的多频带平均能量特征提取方法;针对各特征对故障的敏感度不同,提出了一种基于欧式距离的特征选择方法,选择的特征能较好地反映压缩机的运行状态,最后通过往复压缩机的实验数据验证了该方法的可行性和有效性。  相似文献   

3.
提出了基于小波能谱和小波信息熵的油气管道异常振动事件识别方法。基于Mach-Zehnder光纤干涉仪原理的分布式光纤油气管道安全监测系统实时检测管道沿途振动信号,对测量的时间序列进行小波变换,根据小波系数计算小波能谱与小波信息熵,通过小波能谱和小波信息熵值两种测度识别不同的管道安全异常事件。港枣线成品油管道的现场实验结果表明,该方法可以快速有效地识别管道周围发生的泄漏及其他异常情况,其总体识别准确率达到98.5%,有效降低了误报警率,具有较强的在线工况识别能力。  相似文献   

4.
为了解决实际环境中振动事件易误报的问题,在基于相位敏感光时域反射仪的分布式光纤振动传感系统中,引入了一种融合小波能量谱和支持向量机(SVM)的模式识别方法。首先,利用小波能量谱分析方法,设定最优分解层为5层,并从原始信号中提取出特征向量;然后利用支持向量机的“一对一法”多分类策略对振动事件进行识别分类。考虑到实际环境因素的影响,对沿光纤行走、敲击光纤以及沿光纤慢跑3种模式的振动进行了检测试验;最后,采用准确率、精确率、召回率和F值来综合评价支持向量机分类器的性能。实验结果表明:该模式识别方法实现了84.9%的振动事件分类准确率。  相似文献   

5.
基于时间-小波能量谱的齿轮故障诊断   总被引:4,自引:1,他引:3  
振动信号中的冲击现象及其频率特征是诊断齿轮局部损伤故障的重要依据之一。针对齿轮故障特征提出了一种时间-小波能量谱信号处理方法,它能够有效提取振动信号中冲击成分的时域和频域特征。利用时间-小波能量谱方法分析了正常、磨损、断齿等三种状态的齿轮箱振动信号,并与传统频谱分析方法进行相比。结果表明:时间-小波能量谱不仅可以有效提取故障特征,识别出齿轮箱的故障存在,而且可以清晰地分辨出故障类型及故障元件。  相似文献   

6.
爆破振动信号是典型的短时非平稳随机信号。应用多分辨率特点的小波包变换对爆破振动信号进行多层分解,得到信号能量分布的细节信息。根据建立在概率统计基础上的信息熵概念,推导得到爆破振动信号能量熵计算方法。分析了4种类型爆破振动信号的能量熵,熵值由大到小为:隧道爆破、管道爆炸、台阶爆破、塌落振动。结果表明,能量熵能够反映不同类型爆破对振动信号的影响。提出将能量熵作为爆破振动信号的新特征量,为爆破振动信号特征提取、不同爆破类型振动信号识别和爆破振动预测提供一种新思路。  相似文献   

7.
单段爆破振动信号频带能量分布特征的小波包分析   总被引:3,自引:3,他引:3  
爆破振动分析是研究爆破振动危害控制的基础,也是控制爆破振动危害的前提。根据爆破振动信号具有短时非平稳的特点,利用小波包分析技术对满足分析要求的单段微差爆破振动信号的能量分布特征进行研究。首先,简略地介绍了小波变换与小波包分析的特点。其次,基于MATLAB对单段爆破振动信号进行小波包分析,得到了爆破振动信号在不同频带上的能量分布图。最后,总结了单段爆破振动信号频带能量的分布特征。结果表明,在单段爆破中,爆破震动信号成分主要以中高频(39Hz~156Hz)为主,低频成分(39Hz以下)所占比例极少。  相似文献   

8.
爆破振动信号承载了丰富的爆源与地质属性特征信息,为从能量分布与能量密度角度解析爆破振动信号时频特征,并准确识别毫秒延时爆破实际段间延时时间。设计开展工程现场精确延时台阶爆破振动监测试验,通过MATLAB软件编制小波变换与小波包分析程序,研究爆破振动信号能量在频域的分布规律,利用时能密度分析方法对毫秒延时爆破实际延时时间进行识别。研究结果表明,精确延时台阶爆破振动能量主要集中于5~150 Hz频带范围,并可划分为多个能量集中的子振频带。峰值振动速度与振动能量随传播距离逐渐衰减,但衰减速率存在差异。依据振动信号时间能量密度分布曲线可有效确定实际延时时间,识别延时时间与设计延时时间最大相对误差为4.2%,平均相对误差为2%。提出了一种考虑地震波传播距离差异因素的延时识别修正方法,弥补了各炮孔与监测点距离变化引起地震波传导时间增减而导致的延时识别误差。研究成果可为毫秒延时爆破参数优化设计及电子雷管起爆网路盲炮识别提供理论依据,为复杂环境爆破振动效应分析及控制积累经验。  相似文献   

9.
变转速工况下的滚动轴承微弱故障诊断同时面临两个难点:一是滚动轴承的故障特征信号容易被环境噪声和干扰信号淹没;二是滚动轴承故障振动信号的时变特征难以被常规频谱方法提取。针对上述问题提出了基于时时能量阶比谱的滚动轴承故障诊断方法。首先对变转速工况下的滚动轴承微弱故障振动信号进行时时(time-time,TT)变换,在双时域上刻画轴承故障振动信号的时变特征;然后利用提出的时时能量定义计算轴承故障振动信号的时时能量,获得轴承故障振动信号的时时能量信号;最后对时时能量信号进行阶比分析得到轴承故障振动信号的时时能量阶比谱,并根据时时能量阶比谱的阶次特征识别出轴承故障类型。分析了变转速工况下的滚动轴承故障仿真信号和实验测试信号,结果表明:时时能量信号能够有效追踪轴承故障振动信号的时变能量分布,增强故障特征信号的冲击特征,时时能量阶比谱较包络阶比谱抗噪能力更强,为变转速工况滚动轴承微弱故障诊断提供一种有效方法。  相似文献   

10.
分布式光纤传感器周界安防入侵信号的多目标识别   总被引:1,自引:0,他引:1  
针对分布式光纤在周界安防系统中信号种类,即不同的环境下产生的噪声信号干扰和常见的入侵产生的信号。本文基于全光纤马赫—泽德干涉仪的分布式光纤传感模型,提出了一种识别常见的越境信号和消除环境噪声干扰信号的方法,实现了在去除环境干扰的情况下,用BP神经网络对多种入侵信号识别。实验结果证明,该方法能够有效的区分越境信号和不同环境状态产生的噪声信号,极大的提高了整个系统的识别率,降低了其虚警率。  相似文献   

11.
Background—Human Gait Recognition (HGR) is an approach based on biometric and is being widely used for surveillance. HGR is adopted by researchers for the past several decades. Several factors are there that affect the system performance such as the walking variation due to clothes, a person carrying some luggage, variations in the view angle. Proposed—In this work, a new method is introduced to overcome different problems of HGR. A hybrid method is proposed or efficient HGR using deep learning and selection of best features. Four major steps are involved in this work-preprocessing of the video frames, manipulation of the pre-trained CNN model VGG-16 for the computation of the features, removing redundant features extracted from the CNN model, and classification. In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK. After that, the features of PSbK are fused in one materix. Finally, this fused vector is fed to the One against All Multi Support Vector Machine (OAMSVM) classifier for the final results. Results—The system is evaluated by utilizing the CASIA B database and six angles 00°, 18°, 36°, 54°, 72°, and 90° are used and attained the accuracy of 95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and 95.50%, respectively. Conclusion—The comparison with recent methods show the proposed method work better.  相似文献   

12.
Image captioning involves two different major modalities (image and sentence) that convert a given image into a language that adheres to visual semantics. Almost all methods first extract image features to reduce the difficulty of visual semantic embedding and then use the caption model to generate fluent sentences. The Convolutional Neural Network (CNN) is often used to extract image features in image captioning, and the use of object detection networks to extract region features has achieved great success. However, the region features retrieved by this method are object-level and do not pay attention to fine-grained details because of the detection model’s limitation. We offer an approach to address this issue that more properly generates captions by fusing fine-grained features and region features. First, we extract fine-grained features using a panoramic segmentation algorithm. Second, we suggest two fusion methods and contrast their fusion outcomes. An X-linear Attention Network (X-LAN) serves as the foundation for both fusion methods. According to experimental findings on the COCO dataset, the two-branch fusion approach is superior. It is important to note that on the COCO Karpathy test split, CIDEr is increased up to 134.3% in comparison to the baseline, highlighting the potency and viability of our method.  相似文献   

13.
In the present work, a STEP-based platform-independent system for design and manufacturing feature recognition is developed. A manufacturing feature taxonomy with multiple levels, which is based on the access directions of the feature, is proposed. The system can recognise both design and manufacturing features from the lower level geometry and topology available in the STEP file. The developed system can recognise intersecting features, which is a major shortcoming of previous attempts based on neutral formats. A more complete feature relationship analysis than available in the literature is carried out to find the relationships between all the types of features. Removal volumes and access directions of the features are determined to couple the feature recognition with down line applications. Raw material geometry is also considered while recognising the features. The present system is limited to parts that can be machined on a three-axis machining centre.  相似文献   

14.
In the area of medical image processing, stomach cancer is one of the most important cancers which need to be diagnose at the early stage. In this paper, an optimized deep learning method is presented for multiple stomach disease classification. The proposed method work in few important steps—preprocessing using the fusion of filtering images along with Ant Colony Optimization (ACO), deep transfer learning-based features extraction, optimization of deep extracted features using nature-inspired algorithms, and finally fusion of optimal vectors and classification using Multi-Layered Perceptron Neural Network (MLNN). In the feature extraction step, pre-trained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step. Later on, the activation function is applied to Global Average Pool (GAP) for feature extraction. However, the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization (PSO) with dynamic fitness function and Crow Search Algorithm (CSA). Hence, both methods’ output is fused by a maximal value approach and classified the fused feature vector by MLNN. Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%. The comparison with existing techniques, it is shown that the proposed method shows significant performance.  相似文献   

15.
Brain tumor and brain stroke are two important causes of death in and around the world. The abnormalities in brain cell leads to brain stroke and obstruction in blood flow to brain cells leads to brain stroke. In this article, a computer aided automatic methodology is proposed to detect and segment ischemic stroke in brain MRI images using Adaptive Neuro Fuzzy Inference (ANFIS) classifier. The proposed method consists of preprocessing, feature extraction and classification. The brain image is enhanced using Heuristic histogram equalization technique. Then, texture and morphological features are extracted from the preprocessed image. These features are optimized using Genetic Algorithm and trained and classified using ANFIS classifier. The performance of the proposed ischemic stroke detection system is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Mathew's correlation coefficient.  相似文献   

16.
Log anomaly detection is an important paradigm for system troubleshooting. Existing log anomaly detection based on Long Short-Term Memory (LSTM) networks is time-consuming to handle long sequences. Transformer model is introduced to promote efficiency. However, most existing Transformer-based log anomaly detection methods convert unstructured log messages into structured templates by log parsing, which introduces parsing errors. They only extract simple semantic feature, which ignores other features, and are generally supervised, relying on the amount of labeled data. To overcome the limitations of existing methods, this paper proposes a novel unsupervised log anomaly detection method based on multi-feature (UMFLog). UMFLog includes two sub-models to consider two kinds of features: semantic feature and statistical feature, respectively. UMFLog applies the log original content with detailed parameters instead of templates or template IDs to avoid log parsing errors. In the first sub-model, UMFLog uses Bidirectional Encoder Representations from Transformers (BERT) instead of random initialization to extract effective semantic feature, and an unsupervised hypersphere-based Transformer model to learn compact log sequence representations and obtain anomaly candidates. In the second sub-model, UMFLog exploits a statistical feature-based Variational Autoencoder (VAE) about word occurrence times to identify the final anomaly from anomaly candidates. Extensive experiments and evaluations are conducted on three real public log datasets. The results show that UMFLog significantly improves F1-scores compared to the state-of-the-art (SOTA) methods because of the multi-feature.  相似文献   

17.
Human Action Recognition (HAR) is a current research topic in the field of computer vision that is based on an important application known as video surveillance. Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning, but they still face many challenges such as similarity in various actions and redundant features. We proposed a framework for accurate human action recognition (HAR) based on deep learning and an improved features optimization algorithm in this paper. From deep learning feature extraction to feature classification, the proposed framework includes several critical steps. Before training fine-tuned deep learning models – MobileNet-V2 and Darknet53 – the original video frames are normalized. For feature extraction, pre-trained deep models are used, which are fused using the canonical correlation approach. Following that, an improved particle swarm optimization (IPSO)-based algorithm is used to select the best features. Following that, the selected features were used to classify actions using various classifiers. The experimental process was performed on six publicly available datasets such as KTH, UT-Interaction, UCF Sports, Hollywood, IXMAS, and UCF YouTube, which attained an accuracy of 98.3%, 98.9%, 99.8%, 99.6%, 98.6%, and 100%, respectively. In comparison with existing techniques, it is observed that the proposed framework achieved improved accuracy.  相似文献   

18.
Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification. This work presents a novel approach of robust magnification-independent colon cancer grading framework to distinguish colon biopsy images into four classes: normal, well, moderate, and poor. The contribution of this research is to develop a magnification invariant hybrid feature set comprising cartoon feature, Gabor wavelet, wavelet moments, HSV histogram, color auto-correlogram, color moments, and morphological features that can be used to characterize different grades. Besides, the classifier is modeled as a multiclass structure with six binary class Bayesian optimized random forest (BO-RF) classifiers. This study uses four datasets (two collected from Indian hospitals—Ishita Pathology Center (IPC) of 4X, 10X, and 40X and Aster Medcity (AMC) of 10X, 20X, and 40X—two benchmark datasets—gland segmentation (GlaS) of 20X and IMEDIATREAT of 10X) comprising multiple microscope magnifications. Experimental results demonstrate that the proposed method outperforms the other methods used for colon cancer grading in terms of accuracy (97.25%-IPC, 94.40%-AMC, 97.58%-GlaS, 99.16%-Imediatreat), sensitivity (0.9725-IPC, 0.9440-AMC, 0.9807-GlaS, 0.9923-Imediatreat), specificity (0.9908-IPC, 0.9813-AMC, 0.9907-GlaS, 0.9971-Imediatreat) and F-score (0.9725-IPC, 0.9441-AMC, 0.9780-GlaS, 0.9923-Imediatreat). The generalizability of the model to any magnified input image is validated by training in one dataset and testing in another dataset, highlighting strong concordance in multiclass classification and evidencing its effective use in the first level of automatic biopsy grading and second opinion.  相似文献   

19.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   

20.
基于肤色特征和动态聚类的彩色人脸检测   总被引:2,自引:1,他引:1  
何光宏  潘英俊  吴芳 《光电工程》2004,31(11):47-50
在人类视觉机制和肤色聚类特性的基础上,提出了一种复杂背景下人脸检测方法。该方法采用K-均值动态聚类分析算法,利用人类肤色特征在输入图像中检测包含人脸的似人脸区作为候选人脸,再用同样的方法对候选人脸区域进行扫描,得到真正的人脸。实验结果表明,该方法的正确检出率达到84%,受背景、光照、角度、姿态的影响很小,具有较好的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号