首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Callipeltin A is a cyclic depsidecapeptide isolated from the marine sponges Callipelta sp. and Latrunculia sp. that has been previously shown to increase the force of contraction of guinea-pig atria through the inhibition of Na+/Ca2+ exchanger (NCX). We investigated the effect of callipeltin A on guinea-pig aortic rings contracted by procedures that activate NCX in "calcium entry mode". Callipeltin A did not inhibit these contractions. Resting aorta responded to callipeltin A with a remarkable contraction that was concentration-dependent (EC50 0.44microM). This contraction was not inhibited by the calcium channel blocker verapamil and was not mediated by the activation of alpha-adrenergic or endothelin-1 receptors. Pre-incubation of aortic rings with 0.5mM amiloride, an inhibitor of NCX, completely prevented callipeltin A-induced contraction. Furthermore, callipeltin A (EC50 0.51microM) increased Na+ efflux of Na-loaded erythrocytes. 1H and 13C NMR resonances of callipeltin A revealed small but significant changes in the titration with K+ and Na+ salts. It is suggested that the effect of callipeltin A on cardiac and vascular preparations is linked to a Na-ionophore action.  相似文献   

2.
We examined the intracellular mechanisms for endothelin-1-induced positive and negative inotropic components that coexist in the mouse ventricular myocardium using isolated ventricular tissue and myocytes from 4-week-old mice. In the presence of SEA0400, a specific inhibitor of the Na+–Ca2+ exchanger, endothelin-1 produced positive inotropy. Endothelin-1, when applied to cardiomyocytes in the presence of SEA0400, did not change the peak amplitude of the Ca2+ transient but increased intracellular pH and Ca2+ sensitivity of contractile proteins. On the other hand, in the presence of dimethylamiloride (DMA), a specific inhibitor of the Na+–H+ exchanger, endothelin-1 produced negative inotropy. In cardiomyocytes, in the presence of DMA, endothelin-1 produced a decrease in peak amplitude of the Ca2+ transient. In the presence of both DMA and SEA0400, endothelin-1 produced neither positive nor negative inotropy. Positive inotropy was blocked by BQ-123 and negative inotropy by BQ-788. These results suggested that endothelin-1-induced positive inotropy is mediated by ETA receptors, activation of the Na+–H+ exchanger and an increase in intracellular pH and Ca2+ sensitivity and that the negative inotropy is mediated by ETB receptors, activation of the Na+–Ca2+ exchanger and decrease in Ca2+ transient amplitude.  相似文献   

3.
BACKGROUND AND PURPOSE: The potent vasoconstrictor polypeptide endothelin-1 (ET-1) plays an important pathophysiological role in progression of cardiovascular diseases and elicits prominent effects on myocardial contractility. Although ET-1 produces a positive inotropy in cardiac muscle of most mammalian species, it induces a sustained negative inotropy in mice. This study was performed to gain an insight into the cellular mechanisms underlying the negative inotropy in adult mouse ventricular myocytes. EXPERIMENTAL APPROACH: Cell shortening and Ca(2+) transients were simultaneously recorded from isolated mouse ventricular myocytes loaded with the Ca(2+)-sensitive fluorescent dye indo-1. KEY RESULTS: ET-1 decreased cell shortening in a concentration-dependent manner (pD(2) value of 10.1). The ET-1-induced decrease in cell shortening was associated with a decrease in Ca(2+) transients. In addition, the Ca(2+) transient/cell-shortening relationship was shifted to the right by ET-1, indicating decreased myofilament Ca(2+) sensitivity. The instantaneous relationship of the rising phase of the Ca(2+) transient and cell shortening was shifted to the right by ET-1. Decreased Ca(2+) transients and cell shortening induced by ET-1 were markedly attenuated by the specific Na(+)/Ca(2+) exchange inhibitor SEA0400. CONCLUSIONS AND IMPLICATIONS: ET-1-induced negative inotropy in mouse ventricular myocytes was mediated by decreased Ca(2+) transients and myofilament Ca(2+) sensitivity. These data are entirely consistent with the involvement of increased Ca(2+) extrusion via the Na(+)/Ca(2+) exchanger in the ET-1-mediated decrease in Ca(2+) transients. Decreased Ca(2+) sensitivity may be due to retardation of cell shortening in response to a rise in Ca(2+) transients.  相似文献   

4.
  1. To clarify the mechanisms underlying the positive inotropic action of endothelin-1 (ET-1), we investigated the effect of ET-1 on twitch cell shortening and the Ca2+ transient in rat isolated ventricular myocytes loaded with a fluorescent Ca2+ indicator indo-1.
  2. There was a cell-to-cell heterogeneity in response to ET-1. ET-1 (100 nM) increased twitch cell shortening in only 6 of 14 cells (44 %) and the increase in twitch cell shortening was always accompanied by an increase in the amplitude of the Ca2+ transient.
  3. The ETA- and ETB-receptors antagonist TAK-044 (100 nM) almost reversed both the ET-1-induced increases in twitch cell shortening and in the Ca2+ transient. In the ET-1 non-responding cells, the amplitude of the Ca2+ transient never increased.
  4. Intracellular pH slightly increased (∼0.08 unit) after 30 min perfusion of ET-1 in rat ventricular myocytes. However, ET-1 did not change the myofilament responsiveness to Ca2+, which was assessed by (1) the relationship between the Ca2+ transient amplitude and twitch cell shortening, and by (2) the Ca2+ transient-cell shortening phase plane diagram during negative staircase.
  5. We concluded that there was a cell-to-cell heterogeneity in the positive inotropic effect of ET-1, and that the ET-receptor-mediated positive inotropic effect was mainly due to an increase in the Ca2+ transient amplitude rather than to an increase in myofilament responsiveness to Ca2+.
  相似文献   

5.
阿米洛利对大鼠压力超负荷性心肌肥厚的抑制作用   总被引:1,自引:0,他引:1  
目的 观察钠氢交换体(NHE)抑制剂阿米洛利(Ami)对压力超负荷左室肥厚(LVH)大鼠心功能、心肌细胞内游离钙浓度([Ca2+]i)及心肌细胞膜Na+ 、K+-ATP酶活性的影响。方法 ①同步记录离体工作心脏LVSP、LVEDP、±dp/dtmax及T值;②测定Fura-2/A负载后的单个心室肌细胞的[Ca2+]i;③光电比  相似文献   

6.
Endothelin-1 (ET-1) is a peptide hormone produced within the myocardium which may modulate myocardial contractility in a paracrine-autocrine fashion. In the majority of species, ET-1 has a direct positive inotropic effect on the myocardium that involves both increased myofilament Ca(2+) sensitivity and increased Ca(2+) transients. Ca(2+) entry through reverse-mode Na(+)-Ca(2+) exchange, involving both indirect effects via elevation of intracellular [Na(+)] and direct activation of the Na(+)-Ca(2+) exchanger, have been suggested to contribute to the increase in Ca(2+) transients. Conversely, mouse cardiomyocytes show an exclusively negative inotropic response to ET-1. Here, Nishimaru and colleagues present novel evidence that the negative inotropic effect of ET-1 in mouse cardiomyocytes involves both a reduction in myofilament Ca(2+) sensitivity and increased Ca(2+) extrusion, via Na(+)-Ca(2+) exchange. Data obtained using the selective Na(+)-Ca(2+) exchange blocker, SEA0400, suggest that a re-assessment of the role of the exchanger in Ca(2+)-handling by mouse cardiomyocytes may be necessary.  相似文献   

7.

BACKGROUND AND PURPOSE

The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox.

EXPERIMENTAL APPROACH

Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope.

KEY RESULTS

The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes.

CONCLUSIONS AND IMPLICATIONS

These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes.  相似文献   

8.
BACKGROUND AND PURPOSE The Na(+) /Ca(2+) exchanger is a bi-directional transporter that plays an important role in maintaining the concentration of cytosolic Ca(2+) ([Ca(2+) ](i) ) of quiescent platelets and increasing it during activation with some, but not all, agonists. There are two classes of Na(+) /Ca(2+) exchangers: K(+) -independent Na(+) /Ca(2+) exchanger (NCX) and K(+) -dependent Na(+) /Ca(2+) exchanger (NCKX). Platelets have previously been shown to express NCKX1. However, initial studies from our laboratory suggest that NCX may also play a role in platelet activation. The objective of this study was to determine if the human platelet expresses functional NCXs. EXPERIMENTAL APPROACH RT-PCR, DNA sequencing and Western blot analysis were utilized to characterize the human platelet Na(+) /Ca(2+) exchangers. Their function during quiescence and collagen-induced activation was determined by measuring [Ca(2+) ](i) with calcium-green/fura-red in response to: changes in the Na(+) and K(+) gradient, NCX pharmacological inhibitors (CBDMB, KB-R7943 and SEA0400) and antibodies specific to extracellular epitopes of the exchangers. KEY RESULTS Human platelets express NCX1.3, NCX3.2 and NCX3.4. The NCXs operate in the Ca(2+) efflux mode in resting platelets and also during their activation with thrombin but not collagen. Collagen-induced increase in [Ca(2+) ](i) was reduced with the pharmacological inhibitors of NCX (CBDMB, KB-R7943 or SEA0400), anti-NCX1 and anti-NCX3. In contrast, anti-NCKX1 enhanced the collagen-induced increase in [Ca(2+) ](i) . CONCLUSIONS AND IMPLICATIONS Human platelets express K(+) -independent Na(+) /Ca(2+) exchangers NCX1.3, NCX3.2 and NCX3.4. During collagen activation, NCX1 and NCX3 transiently reverse to promote Ca(2+) influx, whereas NCKX1 continues to operate in the Ca(2+) efflux mode to reduce [Ca(2+) ](i) .  相似文献   

9.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC) in rabbit basilar artery (BA) vascular smooth muscle cells (VSMCs). In this study, we investigated the effects of phosphoinositide 3-kinase (PI3K) on ET-1-induced activation of these channels and BA contraction by using PI3K inhibitors, wortmannin and LY 249002. To determine which Ca(2+) channels are activated via PI3K, monitoring of intracellular Ca(2+) concentration was performed. Role of PI3K in ET-1-induced vasoconstriction was examined by tension study using rabbit BA rings. Only NSCC-1 was activated by ET-1 in wortmannin- or LY 294002-pretreated VSMCs. In contrast, addition of these drugs after ET-1 stimulation did not suppress Ca(2+) influx. Wortmannin inhibited the ET-1-induced contraction of rabbit BA rings that depends on the Ca(2+) influx through NSCC-2 and SOCC. The IC(50) values of wortmannin for the ET-1-induced Ca(2+) influx and vasoconstriction were similar to those for the ET-1-induced PI3K activation. These results indicate that (1) NSCC-2 and SOCC are stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated via PI3K-independent cascade; (2) PI3K is required for the activation of the Ca(2+) entry, but not for its maintenance; and (3) PI3K is involved in the ET-1-induced contraction of rabbit BA rings that depends on the extracellular Ca(2+) influx through SOCC and NSCC-2.  相似文献   

10.
The present study was designed to evaluate the effects of antidepressants on smooth muscle contractile activity. In rat aortic rings, the antidepressants imipramine, mianserin and sertraline provoked concentration-dependent inhibitions of the mechanical responses evoked by K+ (30 mM) depolarization. These myorelaxant effects were not modified by the presence of glibenclamide or 80 mM K+ in the bathing medium. Moreover, the vasodilator properties of imipramine were not affected by atropine, phentolamine and pyrilamine. Radioisotopic experiments indicated that imipramine failed to enhance 86Rb outflow from prelabelled and perifused aortic rings whilst counteracting the increase in 45Ca outflow provoked by a rise in the extracellular K+ concentration. Simultaneous measurements of contractile activity and fura-2 fluorescence revealed that, in aortic rings, imipramine reduced the mechanical and fluorimetric response to K+ challenge. In A7r5 smooth muscle cells, whole cell recordings further demonstrated that imipramine inhibited the inward Ca2+ current. Under different experimental conditions, the ionic and relaxation responses to the antidepressants were reminiscent of those mediated by the Ca2+ entry blocker verapamil. Lastly, it should be pointed out that imipramine exhibited a myorelaxant effect of similar amplitude on rat aorta and on rat distal colon. All together, these findings suggest that the myorelaxant properties of imipramine, and probably also setraline and mianserin, could result from their capacity to inhibit the voltage-sensitive Ca2+ channels.  相似文献   

11.
Antimicrobial fluoroquinolones induce, with strongly varying frequency, life-threatening hypoglycemias, which is explained by their ability to block KATP channels in pancreatic B-cells and thus to initiate insulin secretion. In apparent contradiction to this, we observed that none of the fluoroquinolones in this study (gatifloxacin, moxifloxacin, ciprofloxacin, and a number of fluorophenyl-substituted compounds) initiated insulin secretion of perifused mouse islets when the glucose concentration was basal (5 mM). Only when the glucose concentration was stimulatory by itself (10 mM), the fluoroquinolones enhanced secretion. The fluoroquinolones were ineffective on SUR1 Ko islets, which do not have functional KATP channels. All of these fluoroquinolones depolarized the membrane potential of mouse B-cells (patch-clamping in the whole-cell mode). Using metabolically intact B-cells (perforated-patch mode) however, 100 μM of gatifloxacin, ciprofloxacin or moxifloxacin were unable to depolarize when the glucose concentration was 5 mM, whereas other KATP channel blockers (tolbutamide and efaroxan) remained effective. Only at a very high concentration (500 μM) gatifloxacin and moxifloxacin, but not ciprofloxacin induced repetitive depolarizations which could be antagonized by diazoxide. In the presence of 10 mM glucose all fluoroquinolones which enhanced secretion markedly elevated cytosolic calcium concentration ([Ca2+]i). In the presence of 5 mM glucose gatifloxacin and moxifloxacin at 500 μM but not at 100 μM elevated [Ca2+]i. It is concluded that fluoroquinolones in the clinically relevant concentration range are not initiators, but rather enhancers of glucose-induced insulin secretion. The block of KATP channels appears necessary but not sufficient to explain the hypoglycemic effect of fluoroquinolones.  相似文献   

12.
Exogenous treatment with monosialoganglioside GM1 has been described to afford protection against different apoptotic insults. However, the underlying mechanisms remain to be determined. In this study, we focused on the effect of GM1 on the apoptotic cascade induced by benzo[a]pyrene (B[a]P) in rat hepatic F258 epithelial cells. We first demonstrated that a co-treatment with GM1 (80 microM) reduced B[a]P (50 nM)-induced apoptosis as evidenced by a decrease of both cell population exhibiting nuclear fragmentation and caspase 3 cleavage and activity. We next showed that the p53 phosphorylation and nuclear translocation as well as the intracellular alkalinization related to Na+/H+ exchanger 1 (NHE1) activation, two early events of the apoptosis induced by B[a]P, were not inhibited by GM1. In contrast, the late mitochondria-dependent acidification elicited by B[a]P was inhibited by GM1 co-treatment, and an inhibition of the oxidative stress was also observed. Because GM1 has been shown to reduce the low-molecular weight iron content related to ethanol-induced oxidative stress, we finally investigated the involvement of iron under our conditions. Using the two iron chelators deferiprone and desferrioxamine, we clearly showed that iron played an important role in B[a]P-induced apoptosis in F258 cells, and that B[a]P-treatment resulted in a significant GM1-sensitive increase in (55)Fe uptake. In conclusion, our results indicate that exogenous GM1 partly prevents B[a]P-induced apoptosis by interfering with mitochondria-related intracellular acidification and iron transport.  相似文献   

13.
Effects of endothelin-1 on the contraction and cytosolic Ca(2+) concentrations (?Ca(2+)(i)) of the mouse right ventricle were investigated. Endothelin-1 (1-300 nM) elicited a negative inotropic effect in a concentration-dependent manner. The endothelin-1-induced negative inotropy was antagonized by a selective endothelin ET(A) receptor antagonist, BQ-123 (cyclo ?Asp-Pro-Val-Leu-Trp-; 3, 10 microM). Endothelin-1 reduced the peak amplitudes of both the ?Ca(2+)(i) transient and contraction without changing inward Ca(2+) current. The relationship between peak amplitude of ?Ca(2+)(i) and peak force generated by changing the extracellular Ca(2+) concentration (?Ca(2+)(o)) was not affected by endothelin-1. In addition, the trajectory of the ?Ca(2+)(i)-contraction phase plane diagram obtained at 2 mM ?Ca(2+)(o) in the absence of endothelin-1 was superimposable on that obtained at 4 mM ?Ca(2+)(o) in the presence of endothelin-1 (300 nM). Endothelin-1 (300 nM) translocated protein kinase C from cytosol to membrane, suggesting activation of protein kinase C. Further, a selective protein kinase C inhibitor, bisindolylmaleimide I (10 microM), inhibited the endothelin-1-induced negative inotropy. These results suggest that endothelin-1 elicits negative inotropy by reducing the amplitude of the ?Ca(2+)(i) transient without changing inward Ca(2+) current through the activation of the endothelin ET(A) receptor followed by protein kinase C activation in the mouse right ventricle.  相似文献   

14.
Summary The positive inotropic effect of dopamine has been studied in isolated ventricular strips of guinea-pig heart.The concentration-inotropic response curve for dopamine was significantly shifted to the right by pretreatment with reserpine.In preparations obtained from animals pretreated with reserpine (2.5 mg/kg, 24 h prior to the experiment) the dose-response curve was not significantly affected by haloperidol, a dopamine vascular receptor antagonist (10–6–3×10–6 M).The inotropic effect of dopamine was antagonized by practolol (3×10–7–10–6 M), but not by phentolamine (3×10–6–10–5 M); moreover the alpha-adrenoceptor blocking drug (10–5 M) did not affect the curve for dopamine in the presence of practolol (3×10–7 M).In preparations in which fast sodium channels were blocked by K+-rich medium, slow electrical responses (calcium-mediated action potentials) as well as contractions were induced by high concentrations of dopamine (10–4–3×10–4 M); again these responses were unaffected by phentolamine or haloperidol, but were blocked by practolol.It was concluded that in the guinea-pig ventricular muscle dopamine induced a positive inotropic effect through both indirect and direct action, and that the latter is due to the activation of beta-adrenoceptors.  相似文献   

15.

Background and Purpose

In suburothelial venules of rat bladder, pericytes (perivascular cells) develop spontaneous Ca2+ transients, which may drive the smooth muscle wall to generate spontaneous venular constrictions. We aimed to further explore the morphological and functional characteristics of pericytes in the mouse bladder.

Experimental Approach

The morphological features of pericytes were investigated by electron microscopy and fluorescence immunohistochemistry. Changes in diameters of suburothelial venules were measured using video microscopy, while intracellular Ca2+ dynamics were visualized using Fluo-4 fluorescence Ca2+ imaging.

Key Results

A network of α-smooth muscle actin immunoreactive pericytes surrounded venules in the mouse bladder suburothelium. Scanning electron microscopy revealed that this network of stellate-shaped pericytes covered the venules, while transmission electron microscopy demonstrated that the venular wall consisted of endothelium and adjacent pericytes, lacking an intermediate smooth muscle layer. Pericytes exhibited spontaneous Ca2+ transients, which were accompanied by phasic venular constrictions. Nicardipine (1 μM) disrupted the synchrony of spontaneous Ca2+ transients in pericytes and reduced their associated constrictions. Residual asynchronous Ca2+ transients were suppressed by cyclopiazonic acid (10 μM), 2-aminoethoxydiphenyl borate (10 μM), U-73122 (1 μM), oligomycin (1 μM) and SKF96365 (10 μM), but unaffected by ryanodine (100 μM) or YM-244769 (1 μM), suggesting that pericyte Ca2+ transients rely on Ca2+ release from the endoplasmic reticulum via the InsP3 receptor and also require Ca2+ influx through store-operated Ca2+ channels.

Conclusions and Implications

The pericytes in mouse bladder can generate spontaneous Ca2+ transients and contractions, and thus have a fundamental role in promoting spontaneous constrictions of suburothelial venules.  相似文献   

16.
Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons. Veratridine (10 microM)-induced neuronal cell damage was completely prevented by 0.1 microM tetrodotoxin. Pretreatment with donepezil (0.1-10 microM) for 1 day significantly decreased cell death in a concentration-dependent manner, and a potent NMDA receptor antagonist, dizocilpine (MK801), showed a neuroprotective effect at the concentration of 10 microM. The neuroprotective effect of donepezil was not affected by nicotinic or muscarinic acetylcholine receptor antagonists. We further characterized the neuroprotective properties of donepezil by measuring the effect on [Na+]i and [Ca2+]i in cells stimulated with veratridine. At 0.1-10 microM, donepezil significantly and concentration-dependently reduced the veratridine-induced increase of [Ca2+]i, whereas MK801 had no effect. At 10 microM, donepezil significantly decreased the veratridine-induced increase of [Na+]i. We also measured the effect on veratridine-induced release of the excitatory amino acids, glutamate and glycine. While donepezil decreased the release of glutamate and glycine, MK801 did not. In conclusion, our results indicate that donepezil has neuroprotective activity against depolarization-induced toxicity in rat cortical neurons via inhibition of the rapid influx of sodium and calcium ions, and via decrease of glutamate and glycine release, and also that this depolarization-induced toxicity is mediated by glutamate receptor activation.  相似文献   

17.
The G protein coupling characteristics of a flag epitope-tagged orexin receptor type 1 (OX1R) was investigated in HEK293 cells. Immunoprecipitation of the OX1R and immunoblotting revealed interactions with Gq/G11 proteins as well as with Gs and Gi proteins. Stimulation with orexin-A did not affect the ability of the OX1R to coprecipitate Gq/G11 proteins, but it robustly elevated the intracellular concentration of Ca2+, [Ca2+]i. No changes in cAMP levels could be detected upon receptor stimulation. To get further insight into the functional correlation of G protein activation and Ca2+ signalling, we used baculovirus transduction to express chimeric G proteins, containing the Galphas protein backbone with various Galpha donor sequences (Galphas/x) at the N and C termini, and measured cAMP as functional output. The Galphas/x chimeric proteins with Galpha11(Galphaq) and Galpha16 structure in the C terminus were stimulated by the OX1R. Concentration-response curves with Galphas/16 revealed an agonist potency correlation between G protein activation and the elevation of [Ca2+]i via discharge of intracellular Ca2+ stores, a feature also recognized for the muscarinic M3 receptor. However, in contrast to the M3 receptor, the OX1R elevated [Ca2+]i via influx from extracellular space at about 30-fold lower agonist concentration. The results suggest that the OX1R is linked to influx of Ca2+ through a signal pathway independent of Gq/G11 protein activation.  相似文献   

18.
The CO(2)/HCO(3)(-) buffering system is one of the main mechanisms implicated in cytosolic pH (pH(i)) regulation. We studied this pH(i)-regulatory system in rat mast cells using a fluorescent dye. Mast cells had a more alkaline pH(i) in the presence of HCO(3)(-) than in its absence. The recovery from an acid load was faster in HCO(3)(-)-free conditions than in HCO(3)(-)-containing media. In HCO(3)(-)-buffered conditions the increase of the recovery rate of an acidification in 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-incubated cells suggested the implication of a Na(+)-independent Cl(-)/HCO(3)(-) exchanger. This HCO(3)(-) transport acidified the cytosol and was also partially responsible for the recovery of intracellular alkalinizations. Moreover, regulation of the recovery rate of an acidification by protein kinase C and calcium signaling pathways depended on the presence or absence of HCO(3)(-). The presence of HCO(3)(-) limits the recovery of acute intracellular acidifications probably through the Na(+)-independent Cl(-)/HCO(3)(-) exchanger and modulates the regulation of pH(i) by protein kinase C and calcium.  相似文献   

19.

Background and Purpose

N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly''s action on unstimulated and agonist-stimulated endothelial cells.

Experimental Approach

The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity.

Key Results

In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na+/Ca2+ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs+-based Na+-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na+ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5′-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca2+]i elevation evoked by Na+ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca2+-activated K+ (BKCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BKCa channel activity.

Conclusion and Implications

Our data showed that NCX is a Ca2+ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca2+ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKCa channels.  相似文献   

20.
The pathogenesis of myocardial stunning caused by brief ischemia and reperfusion remains unclear. The aim of the present study was to investigate the underlying mechanism of myocardial stunning. An isolated cell model of myocardial stunning was firstly established in isolated rat ventricular myocytes exposed to 8 min of simulated ischemia and 30 min of reperfusion, the cardiomyocyte contractile function was used to evaluate myocardial stunning. A diastolic Ca(2+) overload without significant changes in systolic Ca(2+) and the amplitude of Ca(2+) transient during the first 10 min of reperfusion played an important role in the occurrence of myocardial stunning. Decreasing Ca(2+) entry into myocardial cells with low Ca(2+) reperfusion was a very efficient way to prevent myocardial stunning. Diastolic Ca(2+) overload was closely related to the reverse mode of Na(+)/Ca(2+) exchanger (NCX) rather than L-type Ca(2+) channel. The activity of the reverse mode of NCX was found significantly higher at the initial time of reperfusion, and KB-R7943, a selective inhibitor of the reverse mode of NCX, administered at first 10 min of reperfusion rather than at the time of ischemia significantly attenuated myocardial stunning. In addition, NCX inhibition also attenuated the Ca(2+) oscillation and cardiac dysfunction when field stimulus was stopped at first 10 min of reperfusion. These data suggest that one of the important mechanisms of triggering myocardial stunning is diastolic Ca(2+) overload caused by activation of the reverse mode of NCX of cardiomyocytes during the initial period of reperfusion following brief ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号