首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Latex paints are widely used in residential and commercial indoor environments. The surface areas covered by the paints in these environments are relatively large. Thus, latex paints have the potential for having a major impact on indoor air quality (IAQ). A study was undertaken to develop methods for evaluating the impact of latex paint emission on IAQ. Small chamber experiments using stainless steel and painted and unpainted gypsum board substrates were conducted to determine the emission characteristics of latex paint. The emissions from the stainless steel were relatively short lived (3 to 4 days), whereas the emissions from gypsum board lasted for over 200 days. Because gypsum board is a common substrate for latex paint, all emission models were developed for the gypsum board substrates. The data from the small chamber tests led to the development of two empirical and two mass-transfer-based source emission models. Approximately 100 to 200 days of data were required to estimate the parameters required for the empirical models. Only 8 days of data were required to estimate the parameters for the mass-transfer-based models. The final models use paint formulation and mass transfer correlations to predict the emissions of the major individual volatile organic compounds emitted by latex paint.  相似文献   

2.
The emission of volatile organic compounds (VOCs) from five different waterborne paints was measured in small climatic chambers under standard conditions over a one-year period. The aims of the study were to evaluate the time emission profiles and to develop methods for comparison of different paints. The paints were applied to tin-plated steel sheets. VOCs were sampled on Tenax TA and analysed by thermal desorption and gas chromatography. The chamber concentrations increased rapidly during the first few hours and then decreased as the emission rates dropped. A model expression including an exponentially decreasing emission rate of the paint film, the air exchange rate, and a normalization of the film thickness was fitted to the concentration versus time data. The time required to reach a given emission rate was estimated and found suitable for comparison of the emission of VOCs from the paints. It was found that data sampled within three weeks or less may be sufficient to predict the emission of VOCs up to one year. Reduction of long-term emissions may be achieved most efficiently by (1) substituting a more -volatile VOC whose emission is controlled by evaporation for a less volatile VOC characterized by diffusion-controlled emission and (2) reducing the paint film thickness rather than reducing the initial VOC content of the paint.  相似文献   

3.
The emissions of volatile organic compounds (VOCs) from building materials may significantly contribute to indoor air pollution, and VOCs have been associated with odor annoyance and adverse health effects. Wood materials together with coatings are commonly used indoors for furniture and large surfaces such as walls, floors, and ceilings. This leads to high surface-to-volume ratios, and therefore, these materials may participate remarkably to the VOC levels of indoor environment. We studied emissions of VOCs and carbonyl compounds from pinewood (Pinus sylvestris) boards of 10% and 16% moisture contents (MC) with three paints using small-scale test chambers (27 L). The emissions from uncoated pinewood and paints (on a glass substrate) were tested as references. The 28-day experiment showed that the VOC emissions from uncoated pinewood were lower from sample with 16% MC. Painted pinewood samples showed lower emissions compared to paints on glass substrate. Additionally, paints on 16% MC pinewood exhibited lower emissions than on drier 10% MC wood. The emissions from painted pinewood samples were dominated by paint-based compounds, but the share of wood-based compounds increased over time. However, we noticed differences between the paints, and wood-based emissions were clearly higher with the most permeable paint.  相似文献   

4.
Chang JC  Guo Z  Fortmann R  Lao HC 《Indoor air》2002,12(1):10-16
The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in a sharp increase of chamber air formaldehyde concentration to a peak followed by transition to a long-term slow decay. A semi-empirical first-order decay in-series model was developed to interpret the chamber data. The model characterized the formaldehyde emissions from the paint in three stages: an initial "puff" of instant release, a fast decay, and a final stage of slow decay controlled by a solid-phase diffusion process that can last for more than a month. The model was also used to estimate the peak concentration and the amount of formaldehyde emitted during each stage. The formaldehyde sources were investigated by comparing emission patterns and modeling outcomes of different paint formulations. The biocide used to preserve the paint was found to be a major source of the formaldehyde. Chamber test results demonstrated that replacing the preservative with a different biocide for the particular paint tested resulted in an approximate reduction of 55% of formaldehyde emissions. But the reduction affected only the third-stage long-term emissions.  相似文献   

5.
Abstract Small environmental chamber tests were conducted to characterize the emissions of a toxic chemical compound – methyl ethyl ketoxime (MEKO) – from three different alkyd paints. It was found that MEKO emissions occurred almost immediately after each alkyd paint was applied to a pine board. Due to the fast emission pattern, more than 90% of the MEKO emitted was released within 10 hours after painting. The peak concentrations of MEKO in chamber air correlated well with the MEKO content in the paint. Material balance showed that good recovery (more than 68%) was achieved between the MEKO applied with the paint and the MEKO emitted. The chamber data were simulated by a first order decay emission model assuming the MEKO emissions were mostly gas-phase mass transfer controlled. The model was used to predict indoor MEKO concentrations during and after painting in a test house. It was found that the predicted test house MEKO concentrations during and after the painting exceeded a suggested indoor exposure limit of 0.1 mg/m3 for all three paints. The predicted MEKO concentrations exceeded even the lower limit of a suggested sensory irritation range of 4 to 18 mg/m3 with two of the three paints tested. The model was also used to evaluate and demonstrate the effectiveness of risk reduction options including selection of lower MEKO paints and higher ventilation during painting.  相似文献   

6.
Abstract The effects of two substrates - a stainless steel plate and a gypsum board - on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to 10 times more than that from the painted gypsum board during the 2-week test period. The dominant chemical species emitted were also different between the two substrates. Data analysis indicated that most VOC emissions from the painted stainless steel occurred in the first 100 h via a fast, evaporation-like process. On the other hand, the majority of the gypsum board VOCs were emitted in a later stage via a slow, diffusion-controlled process. There were measurable emissions of VOCs 11 months after paint application on the gypsum board. It is suggested that, instead of the routinely used substrates such as stainless steel plates, real substrates such as wood or gypsum board should be used for the evaluation of emissions in indoor environments.  相似文献   

7.
Hodgson AT  Rudd AF  Beal D  Chandra S 《Indoor air》2000,10(3):178-192
Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2-9.5 months following installation and in seven new site-built houses 1-2 months after completion. The houses were in four projects located in hot-humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged from 0.14-0.78 h-1. Several of the site-built houses had ventilation rates below the ASHRAE recommended value. In both manufactured and site-built houses, the predominant airborne compounds were alpha-pinene, formaldehyde, hexanal, and acetic acid. Formaldehyde concentrations were below or near 50 ppb with a geometric mean value for all houses of 40 ppb. Similarities in the types of VOCs and in VOC concentrations indicated that indoor air quality in the houses was impacted by the same or similar sources. Major identified sources included plywood flooring, latex paint and sheet vinyl flooring. One site-built house was operated at ventilation rates of 0.14 and 0.32 h-1. VOC emission rates calculated at the two conditions agreed within +/- 10% for the most volatile compounds. Generally, the ratios of emission rates at the low and high ventilation rates decreased with decreasing compound volatility. Changes in VOC emission rates in the manufactured houses over 2-9.5 months after installation varied by compound. Only several compounds showed a consistent decrease in emission rate over this period.  相似文献   

8.
Initation of the eyes and the upper respiratory tract (sensory irritation) in man due to the emission of vapours and gases from water-based indoor paints has been estimated from their ability to decrease the respiratory rate in mice (ASTM: E981-84, slightly modified). An acid-curing lacquer, known to give rise to sensory irritation during occupational exposure, was used as the positive control. In the bioassay the and-curing lacquer also gave rise to a pronounced sensory irritation, confirming that the ASTM method was applicable. Furthermore, the emission of formaldehyde, bases and acids was determined. The irritation within the first week was mainly due to the emission of organic solvents, but formaldehyde also played a role. Later the sensory irritation effect was caused mainly by the emission of formaldehyde. This indicates that the method revealed the different emission phases. None of the water-based paints (3 latex wall paints, 1 silicate paint and 1 distemper) gave rise to a biologically significant irritation effect. Nor did the water-based products emit formaldehyde or acids. However, varying degrees of emission of ammonia were observed. Taking into account the biological detection limits, no significant degree of sensory irritation can be expected in man 1-2 weeks after indoor painting with the tested water-based products.  相似文献   

9.
Lead and its compounds are used in paints not only to impart colour but also to make it durable, corrosion resistant and to improve drying. Adverse health impacts of lead especially on children have led countries to restrict or ban its use in paints. While U.S. and other developed countries instituted measures to limit the use of lead in paints, some developing countries including India have failed to regulate their lead content. The present study was undertaken to determine the levels of lead in new latex (water-based) and enamel paints (oil-based) intended for residential use in India. A total of 69 paint samples (38 latex and 31 enamel samples) from six of the most popular brands were analysed for lead concentrations. While all latex paint samples contained low levels of lead, (i.e., well below 600 ppm as regulated by United States' Consumer Products Safety Commission) the enamel paint samples of all but one brand contained significant concentrations of lead, ranging up to 140,000 ppm. In fact 84% of the enamel paints tested exceeded 600 ppm whereas only 38 % of all samples (including latex and enamel types) exceeded this regulatory level.  相似文献   

10.
Natural materials of biological origin degrade over time and may emit odorous chemical compounds that can influence the perceived indoor air quality. The objective of this study was to investigate how the perceived air quality is influenced by emissions from building products with linseed oil compared with similar conventional synthetic products without linseed oil. Two types of linoleum, two types of wall paint and two types of floor oil were selected as examples of natural products containing linseed oil. The selected synthetic products were PVC floor covering, a water-based paint, and a synthetic floor oil. The emissions from the products were monitored over a one-year period in small ventilated test chambers. The odorous emissions were evaluated by sensory panel assessments of odour intensity and acceptability and by chemical analysis of the odour-active volatile organic compounds (VOCs) and carbonyl compounds. Odour-active VOCs in the emissions from one floor oil with linseed oil and two pure linseed oils were detected by gas chromatography combined with olfactometry (GC-O) and attempted identified with mass spectrometry (MS). The products with linseed oil influenced the perceived air quality more negatively than the similar synthetic products and the odour was persistent over time. It was found that the products with linseed oil did not qualify for the Danish Indoor Climate Label, because of the persistency of the odour. The results of the GC-O/MS investigations and VOC measurements indicated that an almost constant emission of odour-active VOCs with low odour thresholds resulted in the persistency of the odour. The VOCs probably originated from oxidation products from the linseed oil used as raw material. The study indicates that the acceptability of the emissions from the floor oil was influenced by the linseed oil used as raw material. It is therefore suggested that systematic use of less odorous linseed oils may improve the acceptability of the emission from products with linseed oils. The applied combination of sensory assessment of perceived air quality and GC-O/MS seems to be a useful approach in the effort to eliminate unwanted odours from building products.  相似文献   

11.
Brown SK 《Indoor air》2002,12(1):55-63
Volatile organic compounds (VOCs) within new and established buildings have been determined and factors significant to their presence have been identified. In established dwellings, total volatile organic compound (TVOC) concentrations were low, but were approximately four times higher than in outdoor air, showing a dominant effect of indoor sources. The presence of attached garages, site contamination and 'faulty' wool carpet were associated with higher indoor pollution. In three dwellings, unidentified sources of benzene were indicated. Much higher VOC concentrations were observed in new or renovated buildings, persisting above "baseline" levels for several weeks, concentration decay rate correlating with VOC molecular volume, indicating emissions were limited by material diffusion processes. VOC and formaldehyde emission decays in a new dwelling occurred by a double-exponential source model. This shows that persistent low levels of volatile organic pollutants in established dwellings can occur due to long-term emissions from building materials.  相似文献   

12.
Kim S  Kim JA  An JY  Kim HJ  Kim SD  Park JC 《Indoor air》2007,17(5):404-415
Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was 相似文献   

13.
There are many mass-transfer models for predicting VOC emissions from building materials described in the literature. In these models, the volatile organic compound (VOC) emission rate and its concentration in a chamber or a room are usually obtained by analytical method or numerical method. Although these methods demonstrate some salient features, they also have some flaws, e.g., for analytical method the solutions of both room or chamber VOC concentration and building material VOC emission rate are constituted of the sum of an infinite series, in which additional computation for finding roots to a transcendental function is necessary, but sometimes quite complicated. Besides, when it is applied in complex cases such as multilayer emission with internal reaction, the solution is very difficult to get; for conventional numerical methods such as finite difference method, discrete treatment of both time and space may cause calculation errors. Considering that, the state-space method widely used in modern automation control field and the heat transfer field is applied to simulate VOC emissions from building materials. It assumes that a slab of building material is composed of a number of finite layers, in each of which the instantaneous VOC concentration is homogenous during the entire process of emission, while the time is kept continuous. Based on this assumption we can predict both the VOC emissions rate and the concentrations of VOCs in the air of a chamber or room. The method is generally applied to simulate VOC emissions from arbitrary layers of building materials, and the solution is explicit and simple. What's more, the method can be applied to the cases where a reaction producing/removing VOC in building materials exists. For some specific cases the method is validated using the experimental data and the analytical solutions in the literature. The method provides a simple but powerful tool for simulating VOC emissions from building materials, which is especially useful in developing indoor air quality (IAQ) simulation software.  相似文献   

14.
Estimating thermal performance of cool colored paints   总被引:2,自引:0,他引:2  
The purpose of this study is to investigate the thermal performance of cool colored acrylic paints containing infrared reflective pigments in comparison to conventional colored acrylic paints of similar colors (white, brown and yellow) applied on sheets of corrugated fiber cement roofing. Evaluated properties are: color according to ASTM D 2244-89, the UV/VIS/NIR reflectance according to ASTM E 903-96, and thermal performance by exposure to infrared radiation emitted from a lamp with the measurement of surface temperatures of the specimens with thermocouples connected to a data logging system.Results demonstrated that the cool colored paint formulations produced significantly higher NIR reflectance than conventional paints of similar colors, and that the surface temperatures were more than 10 °C lower than those of conventional paints when exposed to infrared radiation. The study shows that cool paints enhance thermal comfort inside buildings, which can reduce air conditioning costs.  相似文献   

15.
利用自制小型环境箱实验研究了面漆挥发性有机物(VOCs)的散发特性。研究结果表明,气流速率、涂层厚度、基底材料的特性以及基底的边缘效应等对面漆VOCs的散发特性有重要影响。高气流速度可以提高VOCs浓度的衰减速率,缩短面漆VOCs的蒸发时间;涂层越厚,环境箱内VOCs浓度越高,VOCs的蒸发时间越长:采用孔隙率较低的材料作基底,基底内VOCs的残存量低,可减轻建筑物使用后的VOCs低浓度污染。基底“边缘效应”可明显改变VOCs浓度随时间的变化关系。  相似文献   

16.
乳液涂料中表面活性剂的研究进展   总被引:2,自引:0,他引:2  
本文综述了近年来国内外有关聚合物乳液以及乳液涂料中表面活性剂(主要是乳化剂)的研究与发展动向,论述了乳化剂在聚合物乳液和乳液型涂料体系中的作用、表面活性剂在涂料组分中的竞争吸附现象,介绍了新型反应性表面活性剂的开发和应用。  相似文献   

17.
Elevated tropospheric ozone is harmful to human health and plants. It is formed through the photochemical reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO(x)). The elevated ozone episodes occur mainly in summer months in the United States, while the high-ozone episodes frequently occur during the fall in Taiwan. The unique landscape of Taiwan produces tremendous amounts of biogenic VOCs in the mountain regions that are adjacent to concentrated urban areas. The urban areas, in turn, generate prodigious amounts of anthropogenic emissions. Biogenic VOC emissions have direct influence on tropospheric ozone formation. To explore the air quality problems in Taiwan, this study attempts to develop a biogenic VOC emission model suitable for air quality applications in Taiwan. The emission model is based on the Biogenic Emissions Inventory System Version 2 and coupled with a detailed Taiwan land use database. The 1999 total Taiwan biogenic VOC emissions were estimated at 214,000 metric tons. The emissions of isoprene, monoterpenes, and other VOCs were about 37.2%, 30.4%, and 32.4% of total biogenic VOC emissions, respectively. The annual total biogenic VOC emission per unit area was more than two times the value of that in any European country, implying that detailed emissions estimates in any size of region will benefit the global biogenic emission inventories.  相似文献   

18.
通过实验,分析讨论了乳液、纳米二氧化硅、白云母对外墙乳胶漆失光率的影响。研究结果表明,乳液的性能不同,乳胶漆的失光率不同;乳胶漆中加入0.1%纳米SiO2,失光率由39%降为12.7%,乳胶漆的失光率明显降低;加入白云母5%,失光率降低16%,对乳胶漆的光泽度和失光率都有一定的改善作用。  相似文献   

19.
A. Rackes  M. S. Waring 《Indoor air》2016,26(4):642-659
We used existing data to develop distributions of time‐averaged air exchange rates (AER), whole‐building ‘effective’ emission rates of volatile organic compounds (VOC), and other variables for use in Monte Carlo analyses of U.S. offices. With these, we explored whether long‐term VOC emission rates were related to the AER over the sector, as has been observed in the short term for some VOCs in single buildings. We fit and compared two statistical models to the data. In the independent emissions model (IEM), emissions were unaffected by other variables, while in the dependent emissions model (DEM), emissions responded to the AER via coupling through a conceptual boundary layer between the air and a lumped emission source. For 20 of 46 VOCs, the DEM was preferable to the IEM and emission rates, though variable, were higher in buildings with higher AERs. Most oxygenated VOCs and some alkanes were well fit by the DEM, while nearly all aromatics and halocarbons were independent. Trends by vapor pressure suggested multiple mechanisms could be involved. The factors of temperature, relative humidity, and building age were almost never associated with effective emission rates. Our findings suggest that effective emissions in real commercial buildings will be difficult to predict from deterministic experiments or models.  相似文献   

20.
A numerical and an analytical model were developed to predict the volatile organic compound (VOC) emission rate from dry building materials. Both models consider the mass diffusion process within the material and the mass convection and diffusion processes in the boundary layer. All the parameters, the mass diffusion coefficient of the material, the material/air partition coefficient, and the mass transfer coefficient of the air can be either found in the literature or calculated using known principles.

The predictions of the models were validated at two levels: with experimental results from the specially designed test and with predictions made by a CFD model. The results indicated that there was generally good agreement between the model predictions, the experimental results, and the CFD results. The analytical and numerical models then were used to investigate the impact of air velocity on emission rates from dry building materials. Results showed that the impact of air velocity on the VOC emission rate increased as the VOC diffusion coefficient of the material increased. For the material with a diffusion coefficient >10−10 m2/s, the VOC emission rate increased as the velocity increased; air velocity had significant effect on the VOC emission. For the material with a VOC diffusion coefficient <10−10 m2/s, the VOC emission rate increased as the velocity increased only in the short-term; <24 h. In the medium to long-term time range, the VOC emission rate decreased slightly as the air velocity increased; velocity did not have much impact on these materials. Furthermore, the study also found that the VOC concentration distribution within the material; the VOC emission rate and the VOC concentration in the air were linearly proportional to the initial concentration. However, the normalized emitted mass was not a function of the initial concentration: it was a function of the properties of the VOC and the material.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号