首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
基片镀膜是氘/氚靶制备过程的重要工序,靶膜的性能直接影响充氘及中子实验。本文对去除表面污渍和氧化层后的基片采用磁控溅射进行镀膜,研制性能优良的强流氘氚中子源用靶膜。采用扫描电镜观察膜层表面外观形貌,根据称重法用电子天秤测量理论膜厚,使用划痕仪分析膜层结合力,并通过电子探针分析膜层的杂质元素含量来表征靶膜的性能。结果表明,磁控溅射镀膜后膜层颗粒度细小、分布均匀,同时膜层表面杂质小于6.0%。镀膜后基片的活化充氘实验表明,氘/钛(原子比)最高可达1.98,满足中子产额实验要求,可进行后续中子实验。  相似文献   

2.
用厚靶氘氚(D-T)反应中子产额的计算方法模拟计算了入射氘离子能量为120 keV时D-T中子源的中子产额。研究了氘离子源产生的束流中单原子氘离子(D+)及双原子氘离子(D2+)比例对中子产额的影响。结果表明,提高D+比例,同时降低D2+比例将有效提高中子产额。另外还研究了不同靶膜材料及组分引起的中子产额变化。表明中子产额与靶膜中氚的含量成正比,与靶膜元素的原子质量成反比。同时分析讨论了离子源品质及靶参数对中子源整体性能的影响,得出离子源束流品质的提高对中子源整体的设计至关重要。最后,模拟计算了靶膜表面有氧化层情况下中子产额的变化,并与实验结果作了对比。在此基础上提出了一种新的靶设计方案,并对其物理可行性进行了研究。  相似文献   

3.
厚靶T(d,n)4He反应加速器中子源的中子产额、能谱和角分布   总被引:4,自引:2,他引:2  
本文给出一种氚钛厚靶氘氚反应加速器中子源的中子产额、能谱和角分布的计算方法,并开发了相应的计算模拟程序.用自行开发的计算程序计算了入射氘束流能量低于1.0 MeV时加速器中子源的中子产额、能谱和角分布,给出了氚钛厚靶的一些典型计算结果,并对结果的可靠性进行分析.  相似文献   

4.
本文给出一种氚钛厚靶氘氚反应加速器中子源的中子产额、能谱和角分布的计算方法,并开发了相应的计算模拟程序。用自行开发的计算程序计算了入射氘束流能量低于1.0MeV时加速器中子源的中子产额、能谱和角分布,给出了氚钛厚靶的一些典型计算结果,并对结果的可靠性进行分析。  相似文献   

5.
基于氚(氘)钛固体靶,利用TARGET程序结合实际的氚(氘)靶和靶室建模,对D-T中子和D-D中子的能量和微分截面角分布、氘离子能量损失率和平均能量、中子平均能量和能散、反应率在氚(氘)钛靶中的深度分布、中子注量率谱和中子产额进行了计算,获得了D-T和D-D中子的相关特性参数。计算结果可为在其他蒙特卡罗模型中精确描述各项异性中子源提供数据,对中子能量单色性和中子产额等指标的选择提供了参考数据。  相似文献   

6.
采用自成靶工艺,研制了SNT-DT/25型密封氘氚中子管,对其工作温度、使用寿命、功耗、中子产额及其稳定性等性能参数进行了测试。结果表明:中子管使用温度可达175℃,最高中子产额≥1×109 n/s,中子产额浮动≤10%;在靶极电压-80kV、阳极电流300μA、靶流80μA的工作条件下,中子产额可达1×108 n/s,中子管的性能指标完全满足中子测井使用要求。此外,本文还对中子产额随靶极电压、阳极电流的影响进行了分析。  相似文献   

7.
我们制成的φ150mm环形氚钛靶,成功地进行了试机,中子产额初步达到10~(11)n/sec,试机15分钟下降3%。氚钛靶的环宽为36mm,钛层厚度为1mg/cm~2,吸氚量为50Ci。 为了提高我所自制2000伏中子发生器的中子产额,决定试制大面积环形氚靶,以增大靶的有效面积,改善靶片冷却,提高中子产额。由于受当时吸氚设备条件的限制,能够吸氚的衬底尺寸,对角线长度不得超过50mm。所以决  相似文献   

8.
对氚化钛膜表面氧化层厚度对氘氚中子产额的影响进行了理论与实验研究.理论计算表明,能量为120keV的氘核入射氚化钛膜的深度为833 nm,入射钛氧化层的深度为527-577 nm.实验结果表明,氧化层降低了氘氚反应的中子产额,且中子产额随氧化层厚度的增加而减小,氧化层厚度低于220nm,中子产额与氧化层厚度的线性关系为Y=(7.524-0.01326X)×106.  相似文献   

9.
本文用D-D反应对密封中子发生器用钛膜自生靶膜最佳厚度做了实验研究。在对实验结果分析的基础上,提出选择自生靶膜最佳厚度的一般原则,并得出在130 keV氘离子轰击下钛膜自成靶的最佳厚度为1.25~1.55μm,该靶在82.5μA束流轰击下D-D反应中子产额为6.5×10~6n/s。  相似文献   

10.
1988年兰州大学成功研制了3×1012 s-1的ZF-300强流中子发生器,主要用于核数据测量、材料辐照损伤等研究。为进一步开展活化法中子核数据测量、裂变物理等研究,兰州大学启动了基于倍压加速器的ZF-400强流中子发生器研制工程,该中子发生器的设计指标为D束流能量400 keV、D束流强度大于30 mA、D-D中子产额大于5×1010 s-1,D-T中子产额大于5×1012 s-1。在裂变物理研究方面,已成功发展了描述裂变核断点裂变势的势驱动模型(potential-driving model),并开展了中子诱发典型锕系核素裂变发射中子前裂变产物的质量分布计算研究;将potential-driving model植入Geant4程序,发展了用于裂变发射中子后裂变产物质量分布、动能分布、裂变中子能谱等模拟的蒙特卡罗方法,并开展了可靠性评估研究;研制了一套用于裂变产物实验测量的双屏栅电离室(TFGIC),并完成了初步实验测试。在中子应用技术方面,为满足小型化中子应用技术系统的研发需求,兰州大学成功研制了长度984 mm、直径234 mm的紧凑型中子发生器,通过在引出加速电极和靶之间加电阻的方式产生偏置电场,实现对靶上二次电子的抑制。在自注入靶条件和150 keV氘束流能量下,D-D中子产额可大于5×108 s-1,该中子发生器已具备产生D-T中子产额大于1010 s-1量级的潜力。完成了基于紧凑型D-T中子发生器的快中子准直屏蔽体的设计,并研发了基于微通道板的快中子成像探测器,初步D-T快中成像测试显示,图像空间分辨率约为500 μm。开展了基于紧凑型D-D中子发生器的核燃料棒235U富集度及均匀性检测系统研发,仿真研究表明,在D-D中子产额5×108 s-1条件下,对核燃料棒中10%范围内的235U富集度相对变化的检测置信度可达到99%。  相似文献   

11.
强流氘氚聚变中子源HINEG(High Intensity D-T Fusion Neutron Generator)研发分两期:HINEG-Ⅰ为直流脉冲双模式,已成功产生中子强度1.1×10~(12)n/s的氘氚聚变中子,并实现连续稳定运行;HINEG-Ⅱ中子强度设计指标为10~(14)~10~(15)n/s量级,重点突破强流离子源和高载热氚靶技术。HNEG中子源可开展中子学方法程序与核数据、辐射屏蔽与防护、材料活化与辐照损伤机理和部件中子学性能等核能与核安全研究,同时也可在核医学与放射治疗、中子照相等领域拓展核技术应用研究。本文简要介绍HINEG总体设计方案与关键技术研究进展。  相似文献   

12.
氘氚中子源通过氘离子束轰击氚靶片引发氘氚聚变反应,产生14.1 MeV高能中子。高能中子调控后亦可产生宽能谱中子场,是先进核能及核技术交叉应用研究的重要实验平台。作为中子源的核心部件,氚靶片由靶片基底和储氚薄膜组成,其中储氚薄膜的核素组成会影响氚原子密度与入射氘离子射程,最终直接关系到中子源强的高低。本文基于MATLAB和SRIM软件建立氘氚中子源强计算模型,对比计算了不同新型储氢金属材料组成的储氚薄膜(TiT_2、MgT_2、Mg_2NiT_4、VT_2、LiBT_4和LaNi_5T_6)和不同氘离子能量对中子源强的影响。计算结果表明,在同等束流条件下,MgT_2的中子源强相比TiT_2可提高30%以上,且制备工艺较为成熟,是氘氚中子源的优秀储氚薄膜材料。  相似文献   

13.
质子加速器适用于为硼中子俘获治疗提供中子源,其中子源强及能谱较反应堆中子源更具可调性。中子靶物理计算分析是加速器中子源设计的基础,为其提供粒子能量、流强等参数需求分析,并为靶体结构尺寸设计、中子慢化和屏蔽分析等提供前端参数。本文利用MCNPX蒙特卡罗程序,通过对质子打靶的中子产额和能谱、靶体能量沉积、打靶后靶材放射性活度和中子出射空间角分布等进行研究,提出能量2.5 MeV质子轰击100~200 μm锂靶的设计,并用模拟计算数据论证其合理性。该设计中子源在1 mA流强质子轰击下,源强可达9.74×1011 s-1;拟设计15 mA、2.5 MeV质子束产生的中子源,在治疗过程中靶材放射性活度累积最大值约为1.44×1013 Bq。  相似文献   

14.
一 概述 国产LNA型密封中子管是由吸附氘气的钛丝、冷阴极潘宁离子源及氚靶组成,密封于高真空度圆柱形玻璃容器内。工作原理是:加热钛丝逸出氘气,在离子源中电离成氘离子,经加速到达于120kV负高压的氚靶上,由D-T反应产生能量为14MeV的快中子。控制钛丝放出的氘气量以调节离子流,从而改变中子产额。若使离子源电压脉冲化,则可同步得到脉冲中子。该中子管由于结构紧凑、携带方便、有一定的中子产额(10~8n/sec),被广泛应用于地质勘探、石油测井等各部门,也是科学研究中常用工具之一。  相似文献   

15.
中子管的中子产额和寿命受靶性能影响,利用SRIM(The Stopping and Range of Ions in Matter)2008模拟计算不同束流和高压条件下钛靶的中子产额,并与3He中子监测仪测量结果进行比较,实验和模拟结果符合较好。模拟计算不同能量氘离子在不同含量的钪钛、钼钛、铌钛三种合金的中子输出和溅射产额。结果表明:入射离子能量为120 keV、合金比例为0.2的钪钛合金中子产额最高,模拟值可达1.24×10~9 s~(-1);合金比例为0.6的钪钛合金,金属原子和氚原子溅射产额较低;与钼钛和铌钛两种合金相比,钪钛合金的中子输出高,而溅射产额低。  相似文献   

16.
厚铍靶9Be(d,n)反应中子产额测量   总被引:1,自引:1,他引:0  
能量在3MeV以下厚靶D-Be反应的中子产额实验数据至关重要,但较为缺乏。本工作在北京大学4.5MV静电加速器上对氘束轰击厚铍靶的中子产额进行测量。对入射氘核能量在0.35~2MeV之间的若干能量点用长中子计数管进行了0°方向中子产额、中子角分布及中子总产额的测量。与已有的测量结果和经验公式进行了比较,并拟合出氘束轰击厚铍靶中子总产额的经验公式。  相似文献   

17.
在目前的氘氚中子发生器源中子分析过程中,固体氚靶中氚浓度深度分布信息的缺失是普遍遇到的问题。为解决此问题,本文建立了利用伴随粒子能谱反演氚浓度深度分布的模型,采用来自氚钛靶的α实验能谱作为模型测试对象,通过该模型获得了氚钛靶中氚浓度深度分布的数据。结果表明,氚浓度随氚钛靶深度的增加呈双峰趋势,两峰之间的氚浓度波谷位于靶中0.94 μm处,该深度正是入射氘粒子的射程极限。所得的氚浓度深度分布趋势与其他实验方法测量结果相符,表明该模型能为氘氚中子发生器的源中子分析提供即时的氚浓度深度分布信息。  相似文献   

18.
中子管是可控中子源测井仪的核心部件,其工作的稳定性、耐高温、中子产额等指标对仪器的工作性能有重要影响。目前,随着深地探测的发展,应用于石油测井的中子管中子产额、耐高温性能、寿命、工作稳定性均有待提升。从结构、材料、制造工艺三方面,对自成靶中子管进行优化设计,进一步降低功耗,提高工作时间。通过耐高温、寿命和中子产额三项指标对外径为25 mm的ENT2465样管进行了性能评估测试,将样管置于中子实验测试平台的油槽内,连接激励线缆,记录样管工作过程中的温度、累计工作时间、中子产额、靶压、靶流和阳极电流。结果表明:在靶压为80 kV、靶流小于60μA条件下,该样管累计使用寿命超过了1 000 h,其中175℃下连续工作时间持续23 h、累计工作超过500 h,室温下连续工作时间持续36 h。在相同靶压、靶流条件下,1 000 h后中子产额仅下降5.3%。  相似文献   

19.
0°方向引出中子的旋转靶由于很难提供α粒子引出管道,因此,给用伴随粒子方法进行中子源强的精确测量带来了困难;而文献[1]中用的靶室由于束流斑点的中心与氚钛靶的几何中心偏离甚小,使它的应用受到了限制。为了满足快中子辐照和快中子活化分析等实验对靶子方面提出的要求,使中子源强能较长时间地稳定在10~(11)n/s水平,并且尽可能充分利用靶面,我们设计并调试好偏心固定靶靶室,改进了水冷系统,对于直径为5cm、活性区直径为4.4cm的氚钛靶,使用的半寿命由原来的6~12μA·h,提高到30~60μA·h。  相似文献   

20.
采用将厚靶分割成薄靶的方法对厚氚钛靶、260keV氘束流能量条件下T(d,n)4He反应中子源的能谱和角分布进行计算。以分割法计算得到的能谱和角分布数据为基础,建立了D-T中子源Monte-Carlo模拟抽样模型,在考虑中子发生器各元件材料及实验大厅墙壁对快中子的慢化、散射和吸收的条件下,采用MCNP程序对兰州大学3×1012s-1强流中子发生器260keV氘束流能量下的中子能谱和角分布进行了模拟,给出了模拟结果。为检验模拟结果的可靠性,与实验测量能谱进行了比较,Monte-Carlo模拟谱和实验测量谱基本符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号