首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A batch reactive membrane separation process is analysed and compared with a batch reactive distillation process by means of residue curve maps. In both processes, the chemical reaction takes place (quasi-) homogeneously in the liquid bulk phase and vapour-liquid equilibrium is assumed to be established. Additionally, in the reactive membrane separation process, selective vapour phase permeation through a membrane is incorporated.A model is formulated which describes the autonomous dynamic behaviour of reactive membrane separation at non-reactive and reactive conditions when vacuum is applied on the permeate side. The kinetic effect of the chemical reaction is characterized by the Damköhler number Da, while the kinetic effect of multicomponent mass transfer through the membrane is characterized by the matrix of effective mass transfer coefficients. The process model is used to elucidate the effect of selective mass transfer on the singular points of reactive membrane separation for non-reactive conditions (Da=0), for kinetically controlled reaction (0<Da<∞), and for equilibrium controlled reaction (Da→∞). Scalar, diagonal and non-diagonal mass transfer matrices are considered. As examples, the simple reaction AB+C in ideal liquid phase, and the cyclization of 1,4-butanediol to tetrahydrofurane in non-ideal liquid phase are investigated.  相似文献   

2.
Residue curve maps (RCMs) of propyl acetate synthesis reaction in the batch reactive distillation process are studied. In order to adapt the model equations of residue curve maps to a practicable heating policy, the theoretical analysis and experimental measurements in this paper are carried out isothermally instead of the autonomous heat policy first introduced by Venimadhavan et al. (A.I.Ch.E. Journal 40 (1994) 1814-1824). The chemical equilibrium constant of this reaction is determined by experiments to be 20 within the temperature range 80-110 °C. Using this equilibrium constant, the RCMs predicted by simulation are in good agreement with the experimental measurements. The results show that there is an unstable node branch emerging from the propyl acetate-water edge, moving toward the chemical equilibrium surface with the increasing Damköhler number (Da), and eventually reaching the quaternary reactive azeotrope when Da→∞. Residue curves are measured with initial compositions around the unstable node, and thus the results verify the existence of this reactive azeotrope. Further bifurcation analysis shows that different heat policies will influence the singular points and topology of kinetically controlled RCMs, but not the cases when Da=0 or Da→∞.  相似文献   

3.
A rigorous two-dimensional steady state mathematical model based on the dusty gas model is implemented to investigate the performance of a bench-scale integrated multi-shell fixed bed membrane reactor with well-mixed catalyst pattern for simultaneous production of styrene and cyclohexane. Since the styrene producing reaction is equilibrium limited, significant displacement of the thermodynamic equilibrium is achieved by three simultaneous actions of an auxiliary hydrogenation reaction of benzene using a well-mixed catalyst pattern, the membrane and the multi-shell reactor configuration. The simulation results show that the complete conversion of ethylbenzene is possible at relatively low temperature and shorter reactor length. Effective operating regions with optimal conditions are observed and explanations offered. An effective length criterion for the optimal conditions is presented. The effective operating regions are found to be sensitive to changes of catalyst bed composition, feed temperature, feed pressure and shells ratio. It is also found that the multi-shell configuration is superior to the single shell configuration. Although this investigation is restricted to two catalysts and two shells, some of the rich characteristics of this system have been uncovered.  相似文献   

4.
Separation properties of a mordenite membrane for water–methanol–hydrogen mixtures were studied in the temperature range from 423 to 523 K under pressurized conditions. The mordenite membrane was prepared on the outer surface of a porous alumina tubular support by a secondary-growth method. It was found that water was selectively permeated through the membrane. The separation factor of water/hydrogen and water/methanol were 49–156 and 73–101, respectively. Even when only hydrogen was fed at 0.5 MPa, its permeance was as low as 10−9 mol m−2 s−1 Pa−1 up to 493 K, possibly suggesting that water pre-adsorbed in the micropores of mordenite hindered the permeation of hydrogen. The hydrogen permeance dramatically increased to 6.5 × 10−7 mol m−2 s−1 Pa−1 at 503 K and reached to 1.4 × 10−6 mol m−2 s−1 Pa−1 at 523 K because of the formation of cracks in the membrane. However, the membrane was thermally stabilized in the presence of steam and/or methanol.  相似文献   

5.
Haihui Wang  You Cong  Weishen Yang   《Catalysis Today》2005,104(2-4):160-167
A dense membrane tube made of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was prepared by plastic extrusion from BSCF oxide synthesized by the complexing EDTA-citrate method. The membrane tube was used in a catalytic membrane reactor for oxidative coupling of methane (OCM) to C2 without an additional catalyst. At high methane concentration (93%), about 62% C2 selectivity was obtained, which is higher than that achieved in a conventional reactor using the BSCF as a catalyst. The dependence of the OCM reaction on temperature and methane concentration indicates that the C2 selectivity in the BSCF membrane reactor is limited by high ion recombination rates. If an active OCM catalyst (La-Sr/CaO) was packed in the membrane tube, C2 selectivity and CH4 conversion increased compared to the blank run. The highest C2 yield in the BSCF membrane reactor in presence of the La-Sr/CaO catalyst was about 15%, similar to that in a packed-bed reactor with the same catalyst under the same conditions. However, the ratio of C2H4/C2H6 in the membrane reactor was much higher than that in the packed-bed reactor, which is an advantage of the membrane reactor.  相似文献   

6.
A new approach for the feasibility analysis of reactive distillation processes based on the reactive extractive curve maps (rExCM) concept is introduced. A method dedicated to reactive distillation feasibility analysis, and design has been developed in our team since 1999. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Currently, the procedure permits the conceptual design of hybrid reactive column configuration with one or two feed plates, for any number of equilibrium reactions (provided that the degree of freedom of the system is equal to 2) occurring in liquid or vapor phase. This contribution focuses on the most recent developments: the generalization of the feasibility analysis step to double‐feed processes thanks to the introduction of the rExCM concept. This methodology is illustrated through two examples: the emblematic methyl acetate example and the production of dimethyl methyl glutarate. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2346–2356, 2012  相似文献   

7.
Integrally skinned asymmetric flat sheet membranes were prepared from poly(2,6‐dimethyl 1,4‐phenylene oxide)(PPO) for CO2–CH4 separation. Various experiments were carried out to identify PPO membranes, which have good mechanical strength and gas separation abilities. Membrane strength and selectivity depend on the interplay of the rate of precipitation and the rate of crystallization of the PPO. The effects of major variables involved in the membrane formation and performance, including the concentration of the polymer, solvent, and additive, the casting thickness, the evaporation time before gelation, and the temperature of the polymer solution, were investigated. Factorial design experiments were carried out to identify the factor effects. The membrane performance was modelled and optimized to approach preset values for high CO2 permeance and a high CO2 : CH4 permeance ratio. Membranes were prepared based on the optimum conditions identified by the model. Essentially, defect‐free membranes were prepared at these conditions, which resulted in a pure gas permeance of 9.2 × 10−9 mol/m2 s Pa for CO2 and a permeance ratio of 19.2 for CO2 : CH4. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1601–1610, 1999  相似文献   

8.
A water‐swollen thin‐film composite membrane, which was a reverse osmosis membrane with a thin polyamide layer, was used to separate a model mixture of N2, CO2, and SO2. The polyamide swells with water, and thus, becomes more permeable to polar gases. The flue gas contains water vapor, which must be removed before it is subjected to SO2 removal. Here moisture is employed to keep the membrane swollen. Using the model mixture, the humidified feed stream is brought to the membrane, where it is cooled below the dew point, so that water condenses on the membrane to keep the polyamide swollen. The membrane showed high CO2 and SO2 permeance, but low selectivity, so it could be applied to separate these two gases from N2, and thus, is suitable for flue gas purification.  相似文献   

9.
Sol–gel reaction of tetraethoxysilane (TEOS) with fumed silica–polyacrylonitrile (PAN) membrane was carried out to prepare hybrid gas permeable membranes for oxygen and nitrogen separation. Various amounts of fumed silica microparticles with a few μm diameters were compounded in PAN–dimethylsulfoxide (DMSO) solution. After casting of the viscous compound solution on a flat sheet with 100 μm thickness, DMSO was evacuated under vacuum at 80°C. Then, the silica–PAN composite membranes were treated with TEOS for 1 day at 40°C in methanol. Air permeation was examined and compared in silica–PAN composite membranes with and without TEOS treatment. The latter hybrid membranes showed selective oxygen permeability, which depended on amounts of fumed silica in the membrane. The TEOS hybrid PAN membranes have a high ability of oxygen permselectivity for O2/N2 gas mixture with α(O2/N2) = 13–17, when the silica content was in the range of 13–20 wt %. This is attributed to siloxane network formation in hybrid silica–PAN composite membranes. Favorable siloxane network formation resulted in high oxygen permeability of the hybrid composite membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1752–1759, 2003  相似文献   

10.
Coupling of innovative and conventional separation technologies has a large potential to improve the energy and solvent demands of existing processes. One example is organic solvent nanofiltration, a pressure‐driven membrane separation process suitable for applications in organic solvents. Challenges are mostly related to the conceptual and detailed process design. To address these challenges, a variety of different tools were developed, integrated within an overall five‐step design workflow and demonstrated on a case study.  相似文献   

11.
The potential of a nano-porous membrane to perform non-chemical separation of a gas mixture has been explored theoretically. Separation of hydrogen sulfide from its mixture with methane by capillary condensation has been selected as the model case. Because of its much lower condensation pressure compared to methane, hydrogen sulfide preferentially condenses in the fine pores and get transported by Poiseuille flow. Permeation rate up to 600 gmol/m2 s bar has been achieved at a temperature lower than the critical temperature of the permeating species and higher than the critical temperature of the non-permeating species. Since methane has a much lower critical temperature than hydrogen sulfide, it gets physically dissolved in the condensed phase of hydrogen sulfide. An equation of state (EOS) approach ha s been adopted to calculate the fugacity of methane in the gas as well as in the condensed phase-in order to estimate its solubility. Computation of permeation flux of the condensed phase as well as of the separation factor of hydrogen sulfide has been performed over a wide range of temperature, pressure and gas composition. The separation factor which is expectedly a function of these variables, ranged from 700 to 100. The separation technique is expected to have an enhanced attraction since it is clean and does not require a solvent as in the conventional separation of acid gases.  相似文献   

12.
Reactive stripping involves non-condensable gas phase that not only removes the condensable components from the liquid phase but also is used as educt. To analyse the feasible products of reactive stripping process, a model is presented. The potential singular point surface (PSPS) is used as a tool to analyse the feasibility of products. Reactive distillation and reactive membrane process are regarded as two limiting cases of this model with fully condensable gas phase without stripping gas and with infinite gas flow rate, respectively. The influence of the mass transfer conditions and gas flow rate on the PSPS of special and general reactive stripping processes is investigated through hypothetical ternary systems. As expected, location and shape of the PSPS can be dramatically changed at different operating conditions of the process and of the physical properties of the involved components, which is helpful for optimising the suitable parameters for the desired product.  相似文献   

13.
Simulations and analysis of transversal patterns in a homogeneous three‐dimensional (3‐D) model of adiabatic or cooled packed bed reactors (PBRs) catalyzing a first‐order exothermic reaction were presented. In the adiabatic case the simulation verify previous criteria, claiming the emergence of such patterns when (ΔTadTm)/(PeC/PeT) surpasses a critical value larger than unity, where ΔTad and ΔTm are adiabatic and maximal temperature rise, respectively. The reactor radius required for such patterns should be larger than a bifurcation value, calculated here from the linear analysis. With increasing radius new patterned branches, corresponding to eigenfunction of the problem emerge, whereas other branches become unstable. The maximal temperature of the 3‐D simulations may exceed the 1‐D prediction, which may affect design procedures. Cooled reactor may exhibit patterns, usually axisymmetric ones that can be characterized by two anomalies: the peak temperature may exceed the corresponding value of an adiabatic reactor and may increase with wall heat‐transfer coefficient, and the peak temperature in a sufficiently wide reactor need not lie at the center but rather on a ring away from it. In conclusions, we argue that transversal patterns are highly unlikely to emerge in practical adiabatic PBRs with a single exothermic reaction, as in practice PeC/PeT > 1. That eliminates patterns in stationary and downstream‐moving fronts, whereas patterns may emerge in upstream‐moving fronts, as shown here. This conclusion may not hold for microkinetic models, for which stationary modes may be established over a domain of parameters. This suggests that a 1‐D model may be sufficient to analyze a single reaction in an adiabatic reactor and a 2‐D axisymmetric model is sufficient for a cooled reactor. The predictions of a 2‐D cylindrical thin reactor with those of a 3‐D reactor were compared, to show many similarities but some notable differences. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
Feasibility analysis of soft constraints for input and output variables is critical for model predictive control (MPC).When encountering the infeasible situation,some way should be found to adjust the constraints to guarantee that the optimal control law exists.For MPC integrated with soft sensor,considering the soft constraints for critical variables additionally makes it more complicated and difficult for feasibility analysis and constraint adjustment.Therefore,the main contributions are that a linear programming approach is proposed for feasibility analysis,and the corresponding constraint adjustment method and procedure are given as well.The feasibility analysis gives considerations to the manipulated,secondary and critical variables,and the increment of manipulated variables as well.The feasibility analysis and the constraint adjustment are conducted in the entire control process and guarantee the existence of optimal control.In final,a simulation case confirms the contributions in this paper.  相似文献   

15.
A one-dimensional steady-state heterogeneous model has been used to simulate the conventional CPO reactor. With the mechanism of O2 permeable membrane, the model has been developed to simulate O2 membrane reactor. The output temperature and the mole flow rates of different species in the tube side and the shell side can be calculated. They are the basis for the exergy analysis of the conventional CPO reactor with air, the conventional CPO reactor with pure O2, and the O2 permeable membrane CPO reactor. The simulation and exergy analysis results indicate that when the inlet conditions are the same, for a given methane conversion, the exergy efficiencies η2 and η1 of conventional CPO reactor with pure oxygen is lowest among the three reactors, because of the large amount of accumulative exergy required for obtaining pure oxygen.The exergy efficiencies η1 and η2 of membrane reactor are comparable with conventional CPO reactor with air and much higher than conventional CPO reactor with pure oxygen. As the membrane reactors can carry out simultaneous separation and reaction, in the mean time, removal of nitrogen from the product stream can be accomplished; the membrane reactor has advantages compared to other types of reactors.The operation of the membrane CPO reactor is more favourable when the inlet temperature is increased and the operation pressure is decreased from a thermodynamic point of view.  相似文献   

16.
The paper introduces a numerical tool based on a predictor–corrector continuation algorithm to obtain the bifurcation analysis of a perfectly stirred reactor with detailed reaction mechanisms.Each step of the continuation algorithm is reviewed and adapted to handle reaction mechanisms with hundreds of species and thousands of reactions. Particularly, the adoption of a Broyden solver in the predictor–corrector algorithm and a new formulation of the test functions are proposed. The implementation in Matlab and the adoption of the CANTERA Toolbox, make the tool easily applicable to reaction mechanisms available in CHEMKIN format.To validate and demonstrate the capability of the tool, the full equilibrium curves have been obtained for three different cases, having increasing number of species and reactions: methane–air (GRIMech.1.2), simple surrogates of Jet-A in air (JetSurF2.0) and a ternary surrogate of Jet-A in air (CRECK). The tool gets performances that make affordable the computations even with desktop computers.  相似文献   

17.
Currently, membrane gas separation systems enjoy widespread acceptance in industry as multistage systems are needed to achieve high recovery and high product purity simultaneously, many such configurations are possible. These designs rely on the process engineer's experience and therefore suboptimal configurations are often the result. This article proposes a systematic methodology for obtaining the optimal multistage membrane flow sheet and corresponding operating conditions. The new approach is applied to cross‐flow membrane modules that separate CO2 from CH4, for which the optimization of the proposed superstructure has been achieved via a mixed‐integer nonlinear programming model, with the gas processing cost as objective function. The novelty of this work resides in the large number of possible interconnections between each membrane module, the energy recovery from the high pressure outlet stream and allowing for nonisothermal conditions. The results presented in this work comprise the optimal flow sheet and operating conditions of two case studies. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1989–2006, 2017  相似文献   

18.
There has been an increasing interest in using exergy as a potential tool for analysis and performance evaluation of desalination processes where the optimal use of energy is considered an important issue. Unlike energy, exergy is consumed or destroyed due to irreversibilies in any real process and thus provides deeper insight into process analysis. Exergy analysis method was employed to evaluate the exergy efficiency of the “compact” and “large” solardriven MD desalination units. The exergy efficiency of the compact and large units with reference to the exergy collected by the solar collector was about 0.3% and 0.5% but was 0.01% and 0.05%, respectively, when referenced to the exergy of solar irradiance. The exergy efficiency of the flat plate solar collectors in both units varied diurnally and the maxima was 6.5% ad 3% for the compact and large units, respectively. The highest exergy destruction was found to occur within the membrane distillation module.  相似文献   

19.
H. Shi  Z. Ding  G. Ma 《Fuel Cells》2016,16(2):258-262
A new series of cobalt‐free perovskite‐type oxides, Nd0.5Ba0.5Fe1–xNixO3–δ (0 ≤ x ≤ 0.15), have been prepared by a citric acid‐nitrate process and investigated as cathode materials for proton conducting intermediate temperature solid oxide fuel cells (IT‐SOFCs). The conductivity of the oxides was measured at 300–800 °C in air. It is discovered that partial substitution of Ni for Fe‐sites in Nd0.5Ba0.5Fe1–xNixO3–δ obviously enhances the conductivity of the oxides. Among the series of oxides, the Nd0.5Ba0.5Fe0.9Ni0.1O3–δ (NBFNi10) exhibits the highest conductivity of 140 S cm−1 in air at 550 °C. A single H2/air fuel cell with proton‐conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte membrane (ca. 40 μm thickness) and NBFNi10‐BZCY composite cathode and NiO‐BZCY composite anode was fabricated and tested at 600–700 °C. The peak power density and the interfacial polarization resistance (Rp) of the cell are 490 mW cm−2 and 0.15 Ω cm2 at 700 °C, respectively. The experimental results indicate that NBFNi10 is a promising cathode material for the proton‐conducting IT‐SOFCs.  相似文献   

20.
The study of permeable composite monolith (PCM) membranes for the Fischer–Tropsch synthesis is continued. On the scale of membranes with outer diameter of 42 mm, it is proved that PCM can combine high productivity of hydrocarbons (>55 kgC5+ ( h)−1 at 0.6 MPa, 484 K), high selectivity towards heavy hydrocarbons (ASF > 0.85, C5+ upto 0.9) as well as high heat-conductivity and high mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号