首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A detailed computational study has been performed at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level for the NCO with CH3 reaction by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable for the singlet PES than the triplet PES. On the singlet PES, the dominant channel is the barrierless addition of the O or N atom to the C atom of the methyl group to form CH3NCO (IM1) and CH3OCN (IM2). On the triplet PES, the favorable channel is the barrierless addition of the N atom to the C atom of the methyl group to form an intermediate CH3NCO (3IM2), which then undergoes a N–C bond scission process to give out CH3N + CO.  相似文献   

2.
We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nm using temperature-programmed desorption. Products, formate (HCOO-), methyl radical (CH3·), ethylene (C2H4), and methanol (CH3OH) have been detected. The initial step in the decomposition of CH2O on the rutile TiO2(100)-(1×1) surface is the formation of a dioxymethylene intermediate in which the carbonyl O atom of CH2O is bound to a Ti atom at the five-fold-coordinated Ti4+ (Ti5c) site and its carbonyl C atom bound to a nearby bridge-bonded oxygen (Ob) atom, respectively. During 355 nm irradiation, the dioxymethylene intermediate can transfer an H atom to the Ob atom, thus forming HCOO- directly, which is considered as the main reaction channel. In addition, the dioxymethylene intermediate can also transfer methylene to the Ob row and break the C-O bond, thus leaving the original carbonyl O atom at the Ti5c site. After the transfer of methylene, several pathways to products are available. Thus, we have found that Ob atoms are intimately involved in the photoinduced decomposition of CH2O on the rutile TiO2(100)-(1×1) surface.  相似文献   

3.
V K Jain  T M Srinivasan 《Pramana》1978,10(2):155-162
The electron paramagnetic resonance of Mn2+ and Gd3+ doped in Pr2Zn3(NO3)12.24H2O single crystals has been studied at X-band. Mn2+ substitutes for two Zn2+ sites, while Gd3+ substitutes for single type of Pr3+ sites. The spin-Hamiltonian analysis of the EPR spectra is presented at 298 K as well as 77 K.  相似文献   

4.
Fe-ZSM-5 samples containing a combination of 57Fe3+ in framework (FW) and regular iron in extra-framework (EFW) sites were prepared by introducing 57Fe in hydrothermal synthesis, then exchanging Fe2+ of natural isotope composition into the lattice. The stability for one part of Fe2+ and Fe2+ ? Fe3+ reversibility for the other part in catalytic decomposition of N2O is demonstrated by in situ Mössbaer measurements. Formation of dinuclear FeFW–O–FeEFW pairs is not prevailing.  相似文献   

5.
The crystal structure of [C(NH2)3]2HgBr4 has been determined at room temperature: monoclinic, space group C2/c, with a = 10.035(2), b = 11.164(2), c = 13.358(3) Å, β = 111.67(3)°, and Z = 4. The crystal consists of planar [C(NH2)3]+ and distorted tetrahedral [HgBr4]2? ions. The Hg atom is located on a two-fold axis such that two sets of inequivalent Br atoms exist in an [HgBr4]2? ion. In accordance with the crystal structure, two 81Br NQR lines widely separated in frequency were observed between 77 and ca. 380 K. [C(NH2)3]2HgI4 yielded four 127I NQR lines ascribable to m = ±1/2 ? ±3/2 transitions, indicating that its crystal structure is different from the bromide complex. The 1H NMR T 1 measurements showed a single minimum for the bromide but two minima for the iodide. The analyses based on the C3 reorientations of the planar [C(NH2)3]+ ions gave the activation energies of 29.8 kJ mol?1 for the bromide, and 30.2 and 40.0 kJ mol?1 for the iodide.  相似文献   

6.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Pure and SmCl3(H2O)6 doped poly(ethylene oxide) (PEO) samples were prepared using a solvent casting method. These samples were characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning colorimetry (DSC) techniques. The FTIR spectra indicate that, only at low dopant concentrations, the interactions between Sm3+ and ether oxygen atoms in PEO are dominant. As the dopant concentration increases, these interactions result in the formation of dopant aggregates or agglomerates leading to a phase separation into a polymer-rich phase and a dopant-rich phase in the films, which have been confirmed by XRD and DSC results.  相似文献   

8.
利用X-射线光电子能谱(XPS)和程序升温脱附谱(TPD)研究了三甲基镓在Pd(111)表面的吸附和解离行为,并考察了表面预吸附H和O的影响。结果表明,在吸附温度为140 K时,三甲基镓在Pd(111)上主要为解离吸附,此时表面物种为Ga(CH3xx=1,2,3)和CHx物种。加热将导致Ga的甲基化合物中的Ga-C键发生分步断裂,在不同温度下产生CH4和H2从表面脱附。同时,XPS结果证实了在275~325 K的温度区间内存在Ga甲基化合物的分子脱附。退火至更高温度,表面只观察到积碳和金属Ga物种,这二者随着温度的继续升高逐渐向体相扩散。在Pd(111)表面预吸附O和H对上述吸附和解离行为存在显著的影响。当表面预吸附H时,脱附产物CH4和H2的脱附主要位于315 K,可归属为一甲基镓的解离脱附。当表面预吸附O时,只在258 K观察到CH4和H2的脱附峰,可能来自于Pd-O-Ga(CH32吸附结构的解离.  相似文献   

9.
Early afterglows of N2 and N2‐O2 flowing microwave discharges are characterized by optical emission spectroscopy. The N and O atom and N2(A) metastable molecule densities are determined by optical emission spectroscopy after calibration by NO titration for N‐atoms and measurements of NO and N2 band intensities for O‐atoms and N2(A) metastable molecules. By using N2 tanks with 50 and 10 ppm impurity, it is determined in the afterglow an O‐ atom impurity of 150‐200 ppm. Variations of the N and O‐atom and N2(A) metastable molecule densities are obtained in the early afterglow of N2–(9·10–5–3·10–3)O2 gas mixtures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The crystal structure of [C(NH2)3]3Sb2Br9 was determined at 143 K: monoclinic, space group C2/c, Z = 4, a = 15.695 (3), b = 9.039(2), c = 18.364(3) Å, β = 96.94(1)°. The structure consists of two crystallographically independent guanidinium ions and two-dimensional corrugated sheets of (Sb2Br9 3?) n , in which SbBr6 octahedra are connected through three bridging Br atoms each other. One of the cations situates in a cavity of the (Sb2Br9 3?) n layer with statistical disorder, while the other situates between the layers without disorder. Three 81Br NQR resonance lines were assignable to terminal Br atoms, while only one line was found for two inequivalent bridging Br atoms. All the 81Br NQR resonance lines were subjected to fade-out at low temperatures. The temperature dependence curve of 1H NMR T 1 showed well defined two minima, which were explained by postulating the C3 reorientations of two types of cations with very different activation energies. The DTA (DSC) measurement revealed a phase transition of a first-order type at 444 K.  相似文献   

11.
In this article, the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH without and with catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2) have been investigated theoretically at the CBS-QB3 level of theory. Our results show that the catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4 and CH3CH2COOH) shows different positive catalytic effects on reducing the apparent activation energy of the isomerisation reaction processes. Such different catalytic effects are mainly related to the number of hydrogen bonds and the size of the ring structure in X (X = H2O, (H2O)2 and (H2O)3)-assisted transition states, as well as different values of pKa for H2SO4, HCOOH and CH3CH2COOH. Very interesting is also the fact that H2SO4-assisted reaction is the most favourable for the hydrogen transfer from HN(NO2)2 to O2NNN(O)OH, due to the smallest pKa (?3.0) value of H2SO4 than H2O, HCOOH, H2SO4 and CH3CH2COOH, and also because of the largest ∠X???H???Y (the angle between the hydrogen bond donor and acceptor) involved in H2SO4-assisted transition state. Compared to the self-catalysis of the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH, the apparent activation energy of H2SO4-assisted channel also reduces by 9.6 kcal?mol?1, indicating that H2SO4 can affect the isomerisation of HN(NO2)2 to O2NNN(O)OH, most obvious among all the catalysts H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2.  相似文献   

12.
张致龙  陈玉红  任宝兴  张材荣  杜瑞  王伟超 《物理学报》2011,60(12):123601-123601
利用密度泛函理论在B3LYP/6-311G*水平上对叠氮化合物(HMgN3)n(n=1–5)团簇各种可能构型进行了几何优化,预测了各团簇的最稳定结构. 并对最稳定结构的成键特性、电荷分布、振动特性及稳定性进行理论研究. 结果表明:HMgN3团簇最稳定结构为直线型;(HMgN3)n(n=2,5)团簇最稳定结构为叠氮基中N原子和金属原子相连构成Mg–N–Mg结构;(HMgN3)n(n=3,4)团簇最稳定结构为叠氮基与Mg原子相互链接形成的环状结构. 团簇最稳定结构中金属Mg原子均显示正电性,H原子均显示负电性,叠氮基中间的N原子显示正电性、两端的N原子显示负电性,且与Mg原子直接作用的N原子负电性更强. Mg–N键和Mg–H键为典型的离子键,叠氮基内N原子之间是共价键. 团簇最稳定结构的红外光谱分为三部分,其最强振动峰均位于2258–2347 cm-1,振动模式为叠氮基中N–N键的反对称伸缩振动. 叠氮基在团簇和晶体中结构不变,始终以直线型存在. 稳定性分析显示,(HMgN3)3团簇相对于其他团簇更为稳定. 关键词: 3)n(n=1–5)团簇')" href="#">(HMgN3)n(n=1–5)团簇 叠氮基 密度泛函理论 结构与性质  相似文献   

13.
Previous investigations have shown that it is difficult to acquire the infrared (IR) spectra of M+(H2O) (M?=?Cu, Au) using a single IR photon by attaching an Ar atom to M+(H2O). To explore whether the IR spectra can be obtained using the two Ar atoms tagging method, the geometrical structures, IR spectra and interaction energies are investigated in detail by ab initio electronic structure calculations for M+(H2O)Ar2 (M?=?Cu, Au) complexes. Two conceivable isomeric structures are found, which result from different binding sites for two Ar atoms. CCSD(T) calculations predict that two Ar atoms are most likely to attach to Cu+ for the Cu+(H2O)Ar2 complex, while the Au+(H2O)Ar2 complex prefers the isomer in which one Ar atom attaches to an H atom of the H2O molecule and the other one is bound to Au+. Moreover, the calculated binding energies of the second Ar atom are smaller than the IR photon energy, and so it is possible to obtain the IR spectra for both Cu and Au species. The changes in the spectra caused by the attachment of Ar atoms to M+(H2O) are discussed.  相似文献   

14.
陈玉红  康龙  张材荣  罗永春  马军 《物理学报》2008,57(8):4866-4874
用密度泛函理论的杂化密度泛函B3LYP方法在6-31G*基组水平上对[Mg(NH2)2n(n=1—5)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究.结果表明:团簇易形成链状结构,Mg—N键长为0.190—0.234 nm,N—H键长为0.101—0.103 nm,H—N—H键角为100.2°—107.5°;团簇中M 关键词: 2)2n(n=1—5)团簇')" href="#">[Mg(NH2)2n(n=1—5)团簇 密度泛函理论 结构与性质 储氢材料  相似文献   

15.
This paper reports on intense blue upconversion in Tm3+/Yb3+ codoped TeO2-Ga2O3-R2O(R=Li, Na, K) glasses upon excitation with commercial available laser diode (LD). Effects of alkali ions on the Raman spectra, thermal stability and spectroscopic properties of the tellurite-gallium glasses have also been investigated. Energy transfer and the involved upconversion mechanisms have been discussed. Intense blue upconversion emission centered at 476 nm along with a weak red emission at 650 nm has been observed upon excitation of 977 nm LD, assigned to the transitions of , and and/or of Tm3+, respectively. The blue upconversion intensity has a cubelike dependence on incident pump laser power, indicating a three-photon process. However, a quadratic dependence of the 476 nm upconversion intensity on the incident pump laser power has been observed when samples under excitation of 808 nm LD due to a two-photon absorption process. Enhanced upconversion luminescence have been observed with replacing K+ for Na+ and Li+.  相似文献   

16.
Reactions between CH3NHNH2 and OOH radical were studied using computational methods. The activation energies (Ea) and Gibbs free energies of activation (ΔG#) were calculated at the MP2 and B3LYP levels of theory. The calculated activation energies of the hydrogen abstraction reactions were less than 100 kJ/mol and those for the substitution reactions were about 150–250 kJ/mol. The calculated activation energies for the intra-molecular hydrogen transfer reactions in CH3NHNH, CH2NNH2 and CH3NN molecules were 210–250 kJ/mol. Catalytic effect of the water molecule on the intra-molecular hydrogen transfer reactions was studied. It was found that the water molecule decreases the activation energies by about 70–100 kJ/mol. Rate constants of the reactions were calculated using transition state theory in the temperature range of 298–2000 K. Consecutive hydrogen abstraction reactions from CH3NHNH2 led to the formation of CH2NN, which was a very stable molecule.  相似文献   

17.
At the generalized gradient approximation (GGA), the elastic constants of the orthorhombic phase of NH3BH3 were calculated with plane-wave pseudo-potential method. Our calculation showed that the orthorhombic phase NH3BH3 is a loose and brittle material, as well as hard to be deformed, also we calculated the elastic anisotropies and the Debye temperatures from the elastic constants. And from the band structure and density of state (DOS), we concluded that NH3BH3 is a wide-gap semiconductor and the band gap is almost 6.0 eV. The bonds between N atoms and H atoms show a strong covalent characteristic, B atoms and H atoms form ironic bonds, and so as to the B-N bonds. Electrons from the B atoms are absorbed by the H atoms around the B atoms, and the H atoms display electronegativity.  相似文献   

18.
The spin Hamiltonian parameters (g factors, hyperfine structure constants and zero-field splittings D and E) and local structures for Mn2+ and Ni2+ in [Zn(en)3](NO3)2 single crystal are theoretically investigated from the perturbation calculations for trigonally distorted 3d5 and trigonally (or orthorhombically) distorted 3d8 cluster. The trigonal Mn2+ and Ni2+ centres are found to undergo the moderate angular variations Δβ of 4.5° and 5.2°, respectively, related to host Zn2+ site due to size mismatch. The orthorhombic Ni2+ centre shows the relative axial elongation ratio ρ (≈ 2.5%) and the relative perpendicular bond length variation ratio τ (≈0.2%). For Mn2+ centre, the contributions to g-shifts ΔgCT (or hyperfine structure constants ACT and zero-field splitting DCT) from charge-transfer (CT) mechanism are opposite in sign and five times (or 5% and 8%) in magnitude compared with those from crystal-field (CF) mechanism. For the trigonal Ni2+ centre, ΔgCT (or DCT) are the same (or opposite) in sign and 17% (or 2%) in magnitude related to those from CF mechanism. For the orthorhombic Ni2+ centre, ΔgCT and ECT (or DCT) are same (or opposite) in sign and 16% and 48% (or 442%) in magnitude with respect to those from the CF mechanism. The signs and magnitudes of the trigonal distortion angles δβ (≈ ?0.3 and 0.4°) related to an ideal octahedron and the local angular variations Δβ related to the host bond angle are suitably illustrated by those of the axial distortion degree (ADD) and the angular variation degree (AVD) of the systems, respectively.  相似文献   

19.
Density functional theory calculations are performed to probe reaction pathways of N2O reduction by CO molecule catalysed over Si-doped C3N (Si-C3N) nanosheets. According to our results, a single Si atom can be stabilised above the C- or N-vacancy site of C3N due to the formation of strong Si-N or Si-C covalent bonds. The reduction of N2O over Si-C3N is characterised as a two-step process. First, N2O is dissociated to N2 and an activated oxygen atom (Oads) without an energy barrier. Then, the Oads moiety is removed by CO molecule by overcoming negligible activation energy.  相似文献   

20.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号