首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
To enhance our understanding of dietary adaptations and socioecological correlates in colobines, we conducted a 20-mo study of a wild group of Rhinopithecus bieti (Yunnan snub-nosed monkeys) in the montane Samage Forest. This forest supports a patchwork of evergreen broadleaved, evergreen coniferous, and mixed deciduous broadleaved/coniferous forest assemblages with a total of 80 tree species in 23 families. The most common plant families by basal area are the predominantly evergreen Pinaceae and Fagaceae, comprising 69% of the total tree biomass. Previous work has shown that lichens formed a consistent component in the monkeys’ diet year-round (67%), seasonally complemented with fruits and young leaves. Our study showed that although the majority of the diet was provided by 6 plant genera (Acanthopanax, Sorbus, Acer, Fargesia, Pterocarya, and Cornus), the monkeys fed on 94 plant species and on 150 specific food items. The subjects expressed high selectivity for uncommon angiosperm tree species. The average number of plant species used per month was 16. Dietary diversity varied seasonally, being lowest during the winter and rising dramatically in the spring. The monkeys consumed bamboo shoots in the summer and bamboo leaves throughout the year. The monkeys also foraged on terrestrial herbs and mushrooms, dug up tubers, and consumed the flesh of a mammal (flying squirrel). We also provide a preliminary evaluation of feeding competition in Rhinopithecus bieti and find that the high selectivity for uncommon seasonal plant food items distributed in clumped patches might create the potential for food competition. The finding is corroborated by observations that the subjects occasionally depleted leafy food patches and stayed at a greater distance from neighboring conspecifics while feeding than while resting. Key findings of this work are that Yunnan snub-nosed monkeys have a much more species-rich plant diet than was previously believed and are probably subject to moderate feeding competition.  相似文献   

2.
Only a few primate species thrive in temperate regions characterized by relatively low temperature, low rainfall, low species diversity, high elevation, and especially an extended season of food scarcity during which they suffer from dietary stress. We present data of a case study of dietary strategies and fallback foods in snub-nosed monkeys (Rhinopithecus bieti) in the Samage Forest, Northwest Yunnan, PRC. The snub-nosed monkeys adjusted intake of plant food items corresponding with changes in the phenology of deciduous trees in the forest and specifically showed a strong preference for young leaves in spring. A non-plant food, lichens (Parmeliaceae), featured prominently in the diet throughout the year (annual representation in the diet was about 67%) and became the dominant food item in winter when palatable plant resources were scarce. Additional highly sought winter foods were frost-resistant fruits and winter buds of deciduous hardwoods. The snub-nosed monkeys' choice of lichens as a staple fallback food is likely because of their spatiotemporal consistency in occurrence, nutritional and energetic properties, and the ease with which they can be harvested. Using lichens is a way to mediate effects of seasonal dearth in palatable plant foods and ultimately a key survival strategy. The snub-nosed monkeys' fallback strategy affects various aspects of their biology, e.g., two- and three-dimensional range use and social organization. The higher abundance of lichens at higher altitudes explains the monkeys' tendency to occupy relatively high altitudes in winter despite the prevailing cold. As to social organization, the wide temporal and spatial availability of lichens strongly reduces the ecological costs of grouping, thus allowing for the formation of “super-groups.” Usnea lichens, the snub-nosed monkeys' primary dietary component, are known to be highly susceptible to human-induced environmental changes such as air pollution, and a decline of this critical resource base could have devastating effects on the last remaining populations. Within the order Primates, lichenivory is a rare strategy and only found in a few species or populations inhabiting montane areas, i.e., Macaca sylvanus, Colobus angolensis, and Rhinopithecus roxellana. Other temperate-dwelling primates rely mainly on buds and bark as winter fallback foods. Am J Phys Anthropol 140:700–715, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

3.
We studied the diet and food availability of a group of Sichuan snub-nosed monkeys for 14 months (July 2003 to September 2004, except for February) in the Shennongjia Nature Reserve, China. This species is primarily a lichen eater, with lichens (Usneaceae) accounting for 43.28% of feeding records (n=3,452). Other food types in the diet were young leaves (28.71%), fruits or seeds (14.57%), buds (5.36%), mature leaves (3.51%), herbs (2.09%), bark (1.36%), and flowers (1.13%). The monkeys used 23 plant species. Their diet showed a complicated seasonal variation: the monthly diet varied from primarily lichens in November-April, to a mixture of leaves and lichens in May-July, to a mixture of fruits or seeds and lichens in August-October (the latter depended on annual fruit and seed availability). The proportion of fruits or seeds in the diet was negatively correlated with that of lichens, which suggests that the monkeys prefer fruits or seeds to lichens when all of these items are available. The fruit or seed availability varied greatly between the two study years. The proportion of lichens, young leaves, flowers, and fruits or seeds in the diet was positively associated with their availability. The monkeys appeared to be selective feeders. They preferred 10 tree species for plant parts, and nine tree species for lichens. The selection index of tree species for lichens was positively related to lichen coverage per branch on tree species, demonstrating that the monkeys preferred tree species with abundant lichens, as well as dead trees for lichens. The results suggest that dead-tree harvesting in the reserve could significantly reduce the quality of habitat for these monkeys, and should therefore be prohibited. Connus controversa, Cerasus discadenia, Salix willichiana, and Malus halliana should be conserved as top priority species because the monkeys preferred them for both their vegetative parts and the lichens that grow on them.  相似文献   

4.
对不同地区川金丝猴食物组成的比较有助于了解其对不同生境食物供应的适应性。本研究通过对陕西川金丝猴猴群食谱的长期记录,并汇集了国内对四川-甘肃和湖北的川金丝猴食性研究结果,集成了这三个地理种群川金丝猴各自的地域性食谱,共计有136 种植物(隶属35 科)被该物种作为采食对象。对来自这三个不同区域(陕西、四川-甘肃、湖北)的川金丝猴食谱组成的比较,发现有近半数的植物是三个地理种群共同的采食对象,但其食谱组成差异明显。这可能源于各地植物本身的多样性差异,及不同地理种群对各种食物采食偏好的不同所致。对其相关聚类分析结果显示,陕西和湖北的猴群在食谱组成上相近,但四川-甘肃的猴群与前两个地区猴群的食谱组成差异极大。然而湖北和四川-甘肃种群在食物的选择上采用了近乎相同的偏好倾向,而陕西的猴群与它们明显不同。我们初步分析认为造成食谱组成和采食偏好差异的原因可能是各地理种群活动地海拔带重叠度不同、森林类型不同、它们在不同林型中活动的时间分配不一。很明显,就我们目前所掌握的有关川金丝猴食谱组成来看,该物种不应该仅仅被认为是一个叶食性灵长类动物,而应该是一个泛化采食者。  相似文献   

5.
Rapid global deforestation has forced many of the world’s primates to live in fragmented habitats, making the understanding of their behavioral responses to degraded and fragmented habitats a key challenge for their future protection and management. The black-and-white snub-nosed monkey (Rhinopithecus bieti) is an endangered species endemic to southwest China. The forest habitat ranges from near-continuous to fragmented. In this study, we investigated the activity budget and diet of a R. bieti population that live in an isolated and degraded habitat patch at Mt. Lasha in Yunnan Province, near the current southern limit of the species. We used our data along with data from six other sites in more-continuous habitats across its range to model factors that predict stress, including feeding effort and time feeding on lichens against potential predictive parameters. Models showed feeding effort across all sites increased with increasing altitude and latitude, and with decreasing food species diversity. There was also a strong positive relationship between feeding effort and time feeding lichens. The Mt. Lasha R. bieti population exploited a total of 36 food species, spending 80.2% of feeding time feeding on lichens, Bryoria spp. and Usnea longissima. These figures are more comparable to those living in the north than those living in the mid- and southern part of the species’ range. Given the models for feeding effort and time feeding on lichens, the unexpectedly high time spend feeding on lichens and feeding effort relative to latitude and elevation are suggestive of a stressed population at Mt. Lasha.  相似文献   

6.
Data on mating and birth seasonality were recorded in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti) at Xiaochangdu in the Honglaxueshan National Nature Reserve, Tibet. This represents one of the harshest habitats utilized by any nonhuman primate. Variation in food availability, temperature, and photoperiod were examined to identify ecological influences on the timing of reproductive events. Mating was observed to occur mostly between July and October and to coincide with peak food availability and temperature, while births occurred between February and mid-March, the end of the period of lowest food availability. This pattern may be an adjustment to the extreme environmental conditions characteristic of this field site.  相似文献   

7.
Although infanticide has been witnessed in many species of Colobinae, and a case was observed in a captive group of golden snub-nosed monkeys (Rhinopithecus roxellana), observed cases of infanticide in wild snub-nosed monkeys (Rhinopithecus spp.) have not previously been recorded. Here we describe the killing of a 1-month-old infant by a male in a black-and-white snub-nosed monkey (R. bieti) group at Xiaochangdu in Tibet. The infanticidal attack was witnessed as part of a long-term observational study of ecology and behavior that began in June 2003. The male was observed killing and eating the infant. The literature proposes three main explanations for infanticide: two adaptive hypotheses (sexual selection and resource competition), and one nonadaptive hypothesis (social pathology). Individual cases of infanticide, such as this one, are important for comparative purposes, but when examined on their own they are difficult to interpret in relation to established theoretical frameworks. The cases we describe here show some consistency with the sexual selection hypothesis, but the lack of critical information (i.e., as to paternity) makes it impossible to draw a firm conclusion. This is also the first described case of cannibalism in snub-nosed monkeys.  相似文献   

8.
2005 ~2008 年于陕西省青木川自然保护区使用瞬时扫描法观察了川金丝猴的食性。结果表明,川金丝猴冬季和夏季共取食42 种植物,可鉴定植物归属23 科34 属。川金丝猴食物类型包括果实、花、树叶、树皮、树芽。夏季取食21 种植物的果实或树叶;冬季取食25 种植物。树叶是其冬季主要食物,取食频次占总取食频次的73.0% ;夏季取食果实的频次占总取食频次的72.2% ,灯台树果实是其主要食物。啃食树皮行为主要发生在落叶阔叶林、针叶林与落叶阔叶混交林;在常绿和落叶阔叶混交林中,树皮啃食强度则相对较小。与其它地区金丝猴的食性比较,该地区川金丝猴食物谱较宽。蔷薇科和壳斗科植物在川金丝猴食物组成中最多,杨柳科、桦木科、山茱萸科、槭树科和忍冬科植物也取食较多。  相似文献   

9.
Grueter CC  Li DY  Feng SK  Ren BP 《动物学研究》2010,31(5):516-522
原则上,食叶的滇金丝猴(Rhinopithecus bieti)和杂食的猕猴(Macaca mulatta)是可以同地共栖的,但这两种灵长类究竟是如何同地共存却一直是一个鲜见涉足的问题。该文初步通过分析它们的食性和生境需求来阐明两者共存的可能性。在猕猴取食约22种植物中,有16种也是滇金丝猴的取食对象。两种灵长类都显示出喜食果实。人们尚未发现滇金丝猴涉足人类作物等相关资源,但发现猕猴经常侵食庄稼。这与其生活海拔不同有关:滇金丝猴一般生活在平均海拔为3218m的山林中,而猕猴活动在平均海拔为2995m的林地。猕猴也会涉足牧场,而滇金丝猴回避这种场地。对于这两个种,混合的落叶阔叶/针叶林是最频繁使用的森林类型;滇金丝猴很少进入常绿阔叶林(青冈属群落,利用率仅3%),而猕猴相对进入这类林型的机会远比滇金丝猴高(36%)。两个物种的群体间常相互远离(2.4km)。当其相遇时,常是猕猴主动回避。上述结果提示滇金丝猴和猕猴是通过大生境分化利用和空间避让来共存的。尽管不同的生境利用策略一定程度上会反映种间竞争的存在,但这种不同更可能反映着它们不同的生理/生态需求。  相似文献   

10.
Expectations of increases in human population growth and accelerated habitat loss, along with the realization that efforts to provide protection for ecosystems that sustain primates have met with limited success, make it critical that conservation plans are grounded firmly in scientific observation. Studies of the diet breadth and feeding behavior of endangered species, therefore, are critical for understanding ecological adaptations and developing a conservation strategy. The diet and feeding ecology of gray snub-nosed monkeys (Rhinopithecus brelichi) were studied in the Fanjingshan National Nature Reserve, Guizhou, China. The monkeys were found to consume 107 different species of trees, shrubs, and ground plants from 58 genera and 28 families. Food items included young leaves, mature leaves, flowers, fruits/seeds, buds, and insects. Among these food items, there were at least 13 evergreen species of tree and liana, 3 species of grasses, and at least 2 kinds of invertebrates collected from decayed wood. Diet varied markedly throughout different seasons. Overall, diet composition (based on feeding records) was 15.3% buds, 25.5% young leaves, 21.8% mature leaves, 9.4% flowers, 21.6% fruits/seeds, and 6.3% other items. The monkeys feed mainly on young leaves and flowers in spring, unripe fruits/seeds and young leaves in summer, ripe fruits/seeds in autumn, and mature leaves and buds in winter. We propose that when inhabiting forests of lower elevation and greater vegetation complexity, R. brelichi is characterized by expanded diet breadth and includes a greater diversity of food types and plant species in its diet. One food type that appears critical to the diet of this species, especially during the winter, are the buds of Magnolia sprengeri. To protect this resource we advocate working with local communities to limit the collection of M. sprengeri, which is used in traditional Chinese medicine and has high economic value for people in the reserve.  相似文献   

11.
2013年3月至2014年2月,在秦岭南坡观音山自然保护区大坪峪颜家沟内选取一群半野生川金丝猴的成年个体作为研究对象,采用瞬时扫描取样法收集其觅食的食物类型数据,目的是为该猴群建立食谱,并通过对比不同季节内觅取的食物组成差异探讨秦岭南坡川金丝猴如何应对喜食食物的季节性缺乏。结果表明:秦岭南坡川金丝猴共采食53种植物(包括34种乔木、13种灌木、6种藤本植物)和4种大型真菌,分别占取食植物组成的64.3%、25.3%、8.0%和2.2%,春、夏、秋、冬季节取食种类和多样性指数分别为20种(3.93)、19种(3.73)、21种(3.87)和25种(4.12)。在秦岭南坡川金丝猴的食物组成中,地衣占总觅食记录的22%;树叶占20%,其中嫩叶9%和成熟叶11%;种子、树皮、芽苞、果实和叶柄分别占16%、15%、11%、 9%和7%。该猴群觅取的植物部位具有明显的季节性差异。春季,对树皮和芽苞的觅食量较高,分别为28%和25%;夏季,增加了对成熟叶的采食量(29%),而减少了芽苞的觅取量(5%);秋季,以取食种子和果实为主,分别占总觅食的48% 和16%;冬季,地衣的采食量达到最大值(41%)。觅食的食物组成与食物的可获得性呈正相关性(R = 0.984, P < 0.01),这与大多数叶猴的适应策略类似,在喜食食物短缺的冬季,它们选择更多的地衣和树皮为食,同时它们采食的种类和食物多样性也有相应增加。  相似文献   

12.
We collected data on diet and daytime activity budget, and investigated the phenology of food trees and food abundance for a group of Rhinopithecus roxellana on the East Ridge of Yuhuangmiao in the Qinling Mountains from November 2001 to December 2003. We calculated the seasonal activity budget using data collected by scan sampling from 84 full-day observations (winter 16, spring 18, summer 28, autumn 22 days). During scan sampling we recorded behavioral states, and the food items and species consumed. The subjects consumed 84 plant species, including trees and shrubs of 29 families, and lichens. Food species varied seasonally. The overall diet of R. roxellana consisted of 29.4% fruit/seeds, 29.0% lichens, 24.0% leaves, 11.1% bark, 4.2% buds, 1.3% twigs and 1.0% unidentified items. Because the abundance of different food items varied seasonally, the monkeys had to shift their major food items seasonally. The annual activity budget of R. roxellana was 36.2% time spent resting, 35.8% feeding, 22.9% moving, and 5.1% other behavior. Seasonal changes in activity budget were observed. R. roxellana spent more time moving in autumn, when the quality of the food might be highest, and least time moving in winter when the food quality might be lowest. Thus, this type of monkey has a passive foraging strategy.  相似文献   

13.
黑白仰鼻猴种群生存力初步分析   总被引:8,自引:0,他引:8  
根据黑白仰鼻猴 (Rhinopithecusbieti)的相关参数 ,借助漩涡模型 (Vortex 9 4 2 ) ,对黑白仰鼻猴的种群动态进行了模拟分析。结果表明 ,在没有近亲繁殖和偷猎影响的情况下 ,各亚种群 10 0年间均持续增长 ,即使数量较少的攀天阁和白济讯亚种群的灭绝概率也只有 3%和 6 %。在加入近亲繁殖和偷猎因素时 ,有 5个亚种群 (小昌都、乌牙普牙、金丝厂、富合山和格花箐 )保持增长态势 ,3亚种群 (茨卡通、各摩茸及响姑箐 )数量保持稳定 ,其他 5个亚种群 (米拉卡、巴美、龙马山、攀天阁和白济讯 )呈下降趋势。在其他条件相同的情况下 ,大的环境容纳量能够促进亚种群的增长 ,因此 ,保护生境是保护该物种的根本途径。偷猎对整个异质种群增长有负作用 ,所以杜绝偷猎发生是保护该物种的重要条件。近亲繁殖率随种群减小和时间推移逐渐增加 ,也对猴群的长期存活有负面影响。  相似文献   

14.
温带地区分布的灵长类动物在食物匮乏的时候容易受到食物不足的胁迫。川金丝猴就是分布于温带区域的灵长类动物之一,因此在不同的季节,食物对其有不同程度的影响。神农架自然保护区是川金丝猴分布的最东缘,该地区的研究对川金丝猴的保护有着非常重要的影响。本文通过对神农架川金丝猴食源植物和栖息环境 的植被调查,来探讨食物的分布和丰富程度对川金丝猴的影响。在神农架川金丝猴分布的核心地区,选择具有代表性的植被类型,按照海拔梯度设置88个样方,基于优势树种和数据分析,我们把川金丝猴的栖息地划分为12 个类型。阔叶林的食源植物种类要高于针阔混交林;而低海拔的类型中提供食源植物的种类要高于高海拔类型。尽管川金丝猴的食谱范围很广,但是它喜食的食物种类分布极不均匀,而且在其不同类型的栖息地内,食源植物的种类和数量随着季节的变化而变化。因此,季节的变化和食源植物的分布不均衡都会影响川金丝猴的取食行为和时间分配。我们建议借助人为改造森林结构,增加食源植物的数量,进而达到保护和扩大川金丝猴种群的目的。  相似文献   

15.
Anthropogenic changes and fragmentation of natural habitats often exert a negative effect on resource availability and distribution, and the nutritional ecology and feeding behavior of nonhuman primates. The goals of this study are to examine food choice and to identify the nutritional profile of foods consumed by the Critically Endangered black snub-nosed monkey (Rhinopithecus strykeri). To accomplish our study goals, we presented cafeteria-style feeding trials of fresh food items collected in the home range of wild black snub-nosed monkeys to the only two captive R. strykeri, and compared the nutritional profiles of the leafy foods (buds, young, and mature leaves, 100 items from 70 plant species) selected with those avoided (54 items from 48 plant species). Overall, the results indicate that captive R. strykeri selected foods that were higher in moisture (Mo; 77.7%), crude protein (CP; 21.2%), total nonstructural carbohydrates (TNC; 34.9%), and phosphorus (P; 0.37%) while tending to avoid foods with a neutral detergent fiber (NDF) content of greater than 46.8%. Leaves collected in autumn and selected by the monkeys were characterized by a slightly higher amount of metabolizable energy (ME) than those rejected (1,350 kJ/100 g vs. 1,268 kJ/100 g). In contrast, the protein content of foods collected and consumed during the spring was greater (22.9%) than in autumn (16.4%). Random Forests modeling, an ensemble learning method, indicated that the proportion of Mo, NDF, ME, CP, P, and TNC were among the most important factors in predicting which items were consumed by the captive R. strykeri during spring and autumn. On the basis of the nutritional profile of foods consumed across the two seasons, we identified 18 nutrient-rich native plant species that we recommend for use in ex- and in-situ conservation management and reforestation programs to provide long-term access to a nutritionally adequate diet.  相似文献   

16.
Group size influences intragroup scramble competition, which in turn influences time budgets in some primates, and may impact age–sex classes differently. There is a great deal of debate about whether folivorous primates, e.g., colobines, experience significant feeding competition. Unlike most colobines, Sichuan snub-nosed monkeys (Rhinopithecus roxellana) live in extraordinarily large groups and eat mainly lichens supplemented by seasonal plant food. We examined the effect of group size on time budgets in this species by studying two groups of different sizes in the same habitat in Shennongjia National Nature Reserve, China (study periods: August 2006–July 2008 for the larger group, November 2008–July 2009 for the smaller group). Results showed that the distribution of activities throughout the day did not differ between groups, but that time budgets did differ. Specifically, the monkeys spent more time moving and less time resting in the larger group than in the smaller group. Intergroup comparisons for each age–sex class indicated that adult females (but not adult males or juveniles) in the larger group spent more time moving and less time resting, and tended to spend more time feeding compared to those in the smaller group. The results suggested that increased scramble competition was occurring for adult females in the larger group. We provided preliminary evidence for the existence of intragroup scramble competition in Rhinopithecus roxellana.  相似文献   

17.
The ecological-constraints model assumes that food items occur in depletable patches and proposes that an increase in group size leads to increased day range due to more rapid patch depletion. Smaller groups become advantageous when an increase in travel costs is not repaid by an increase in energy gained or some other fitness advantage. On the other hand, we also know that group size can be influenced by social factors. Here we contrast the diet and group size of red colobus (Procolobus badius) and black-and-white colobus (Colobus guereza) in Kibale National Park, Uganda to consider how ecological and social factors are affecting their group sizes. Subsequently, we examine whether the insights gained from this detailed comparison can provide an understanding of why the social organization and group size of mantled howlers (Alouatta palliata) and black howlers (A. pigra) differ. Two groups of red colobus and two groups of black-and-white colobus were studied over 10 months. Red colobus groups were larger (48 and 24) than black-and-white colobus groups (9 and 6). The two groups of red colobus overlap home ranges with the two groups of black-and-white colobus; 75% and 95% of their home ranges were within red colobuss home range. There was a great deal of similarity in the plant parts eaten by the two species and both species fed primarily on young leaves (red colobus 70%, black-and-white colobus 76%). In terms of the actual species consumed, again there was a great deal of similarity between species. The average dietary overlap among months for the two neighboring groups of red colobus was 37.3%, while the dietary overlap between the red colobus and the black-and-white colobus group that had its home range almost entirely within the home range of the red colobus groups averaged 43.2% among months. If ecological conditions were responsible for the difference in group size between the two colobine species, one would expect the density of food trees to be lower in the home ranges of the black-and-white colobus monkeys, since they have the smaller group size. We found the opposite to be true. Both black-and-white colobus groups had more food trees and the cumulative size of those trees was greater than those in the red colobuss home ranges. We quantify how these differences parallel differences in mantled and black howlers. The average group size for mantled howlers was 12.9 individuals, and for black howlers it was 5.3 individuals. We explore possible social constraints, such as infanticide, that prevent black-and-white colobus and black howlers from living in large groups.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

18.
Temperate forests are characterized by pronounced climatic and phenological seasonality. Primates inhabiting such environments experience prolonged resource scarcity and low ambient temperatures in winter and are expected to adjust time allocation and foraging behavior so as to maintain their energy balance. We analyzed the activity scheduling of a group of Yunnan snub-nosed monkeys (Rhinopithecus bieti) based on data collected over 20 months in the high-altitude (>3000 m) Samage Forest, Baimaxueshan Nature Reserve, PRC. The forest consists of evergreen conifers and oaks and deciduous broadleaf trees. The diet varied seasonally, with young leaves preferentially exploited in spring and fruits in summer. The monkeys subsisted on readily available fallback resources (mainly lichens) in winter [Grueter et al. in (Am J Phys Anthropol 140:700–715, 2009)]. We predicted that this switch to a relatively low-quality diet would prompt an increase in feeding effort and decrease in moving effort. We found that the monkeys spent significantly more time feeding in winter than in the other seasons. The monthly time devoted to feeding was also negatively correlated with temperature and positively with percentage of lichens in the diet. Time spent on moving did not vary among seasons or with temperature, but day-journey length was found to be longer on hotter days. Time spent resting was lower in winter and under colder conditions and was also negatively correlated with time spent feeding, indicating that resting time is converted into feeding time during times of ecological stress. These results indicate a strong effect of seasonality on time allocation patterns, constraints on inactivity phases, and the prevalence of an energy-conserving foraging strategy in winter, when costs of thermoregulation were high and the availability of preferred food was low.  相似文献   

19.
An organism’s fitness is tied closely to its ability to obtain food. However, many foods are nutritionally suboptimal on their own, forcing an individual to develop a feeding strategy that actively manages both type and amount of food consumed. Animals in captivity are additionally limited to human provisioned diets, which may be nutritionally inadequate and negatively affect behavior and health. We studied the nutritional intake of captive golden snub-nosed monkeys (Rhinopithecus roxellana) at two locations in China (132 days of continuous, sunrise to sunset focal samples of 7 individuals at each site) and used the Geometric Framework for nutrition to identify their feeding strategy and evaluate diet variation across sites, seasons, and age–sex classes. Captive golden snub-nosed monkeys had a mean nutrient intake of 75% carbohydrates (15% neutral detergent fiber, 60% total nonstructural carbohydrates), 12% fat, and 13% protein (by energy) that differed by location and season owing to differences in the type and amount of food items offered and consumed. Intake at one location differed from that of wild golden snub-nosed monkeys, suggesting that the captive diet was inadequate. These results highlight the importance of developing nutritionally adequate diets for captive animals based on an understanding of their nutritional requirements.  相似文献   

20.
As anthropogenic habitat changes are often considered a threat to natural ecosystems and wildlife, a sound understanding of the effects of habitat alteration on endangered species is crucial when designing management strategies or performing conservation activities. Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are categorized as endangered on the IUCN Red List and are endemic to the trans-Himalayas in China. At present, there are only 15 groups and 2,500 individuals remaining in the wild, and they are facing intense habitat degradation with selective logging for house building and firewood. Habitat deterioration through wood extraction is occurring at Xiaochangdu, Tibet, where one stable group of R. bieti lives in a marginal habitat in the northernmost part of the species' distribution. To understand the species' response to selective logging in an extremely marginal habitat, data on habitat preference and diet composition of a group of R. bieti were collected at Xiaochangdu from 2003 to 2005. The monkeys used different habitats nonrandomly during the year. The selection index for secondary conifer forest (SC), where selective logging has occurred, was the highest of all habitat types (>1), suggesting that the groups strongly preferred SC. The monkeys fed more on buds/leaves, more on flowers/fruit/seeds, and less on lichen in SC than in primary conifer forest (PC). Dietary diversity was significantly higher in SC than in PC. These results indicate that over the short term, low-intensity disturbances may result in increased foliage diversity that enable groups of R. bieti to survive in this marginal habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号