首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expansion of CAG.CTG trinucleotide repeats has been associated with an increasing number of human diseases. Once into the expanded disease-associated range, the repeats become dramatically unstable in the germline and also throughout the soma. Instability is expansion-biased, contributing towards the unusual genetics, and most likely the tissue-specificity and progressive nature of the symptoms. Such expansions constitute a unique form of dynamic mutation whose mechanism is poorly understood. It is generally assumed that repeat length changes arise via replication slippage, yet no direct evidence exists to support this hypothesis in a mammalian system. We have previously generated transgenic mouse models of unstable CAG.CTG repeats that reconstitute the dynamic nature of somatic mosaicism observed in humans. We have now used tissues from these mice to establish in vitro cell cultures. Monitoring of repeat stability in these cells has revealed the progressive accumulation of larger alleles as a result of repeat length changes in vitro, as confirmed by single cell cloning. We also observed the selection of cells carrying longer repeats during the first few passages of the cultures and frequent additional selective sweeps at later stages. The highest levels of instability were observed in cultured kidney cells, whereas the transgene remained relatively stable in eye cells and very stable in lung cells, paralleling the previous in vivo observations. No correlation between repeat instability and the cell proliferation rate was found, rejecting a simple association between length change mutations and cell division, and confirming a role for additional cell-type specific factors.  相似文献   

2.
BACKGROUND: An increase in CAG trinucleotide repeat length in the androgen receptor (AR) gene has been linked to idiopathic azoospermia. METHODS: In order to test whether other (CAG/CTG)(n) loci are also affected, the (CAG/CTG)(n) frequency distribution at myotonic dystrophy type 1 (DM1), Machado-Joseph disease (MJD), dentatorubral-pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia type 8 (SCA8) loci, in addition to the AR gene, was investigated in 48 azoospermia patients and 47 controls. RESULTS: The median CAG repeat length in the AR gene was significantly longer in azoospermia patients than in controls (23 versus 21, P < 0.001). Significant differences were also noted in the upper tails of trinucleotide repeat length distributions at both DM1 and MJD loci between the two populations. At the DM1 locus, alleles of more than 18 repeats were observed only in azoospermia patients, and not in controls (P = 0.014). At the MJD locus, the frequency of normal alleles (ANs) with 29 or more CAG repeats was also much higher in azoospermia patients (29.2 versus 7.4%; P = 0.0001). However, the repeat length distribution at DRPLA and SCA8 loci did not differ in the two groups. CONCLUSIONS: These data indicated that, at least in a subset of azoospermia patients, there was an increase in the number of trinucleotide repeats in some disease loci. Thus, it is noteworthy to evaluate whether offspring of these azoospermia patients, if born by assisted reproductive technologies, have an increased risk of trinucleotide repeat diseases.  相似文献   

3.
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant cerebellar ataxia caused by a CAG repeat expansion in the ataxin-7 gene. In humans, SCA7 is characterized by marked anticipation due to intergenerational repeat instability with a bias toward expansion, and is thus regarded as the most unstable of the polyglutamine diseases. To study the molecular basis of CAG/CTG repeat instability and its pathological significance, we generated lines of transgenic mice carrying either a SCA7 cDNA construct or a 13.5 kb SCA7 genomic fragment with 92 CAG repeats. While the cDNA transgenic mice showed little intergenerational repeat instability, the genomic fragment transgenic mice displayed marked intergenerational instability with an obvious expansion bias. We then went on to generate additional lines of genomic fragment transgenic mice, and observed that deletion of the 3' genomic region significantly stabilized intergenerational transmission of the SCA7 CAG92 repeat. These results suggest that cis-information present on the genomic fragment is driving the instability process. As the SCA7 genomic fragment contains a large number of replication-associated motifs, the presence of such sequence elements may make the SCA7 CAG repeat region more susceptible to instability. Small-pool and standard PCR analysis of tissues from genomic fragment mice revealed large repeat expansions in their brains and livers, but no such changes were found in any tissues from cDNA transgenic mice that have been shown to undergo neurodegeneration. As large somatic repeat expansions are absent from the brains of SCA7 cDNA mice, our results indicate that neurodegeneration can occur without marked somatic mosaicism, at least in these mice.  相似文献   

4.
Increased trinucleotide repeat instability with advanced maternal age   总被引:15,自引:14,他引:1  
Nucleotide repeat instability is associated with an increasing number of cancers and neurological disorders. The mechanisms that govern repeat instability in these biological disorders are not well understood. To examine genetic aspects of repeat instability we have introduced an expanded CAG trinucleotide repeat into transgenic mice. We have detected intergenerational CAG repeat instability in transgenic mice only when the transgene was maternally transmitted. These intergenerational instabilities increased in frequency and magnitude as the transgenic mother aged. Furthermore, triplet repeat variations were detected in unfertilized oocytes and were comparable with those in the offspring. These data show that maternal repeat instability in the transgenic mice occurs after meiotic DNA replication and prior to oocyte fertilization. Thus, these findings demonstrate that advanced maternal age is an important factor for instability of nucleotide repeats in mammalian DNA.   相似文献   

5.
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease, caused by the expansion of a trinucleotide repeat (TNR) in exon 1 of the androgen receptor (AR) gene. This disorder is characterized by degeneration of motor and sensory neurons, proximal muscular atrophy, and endocrine abnormalities, such as gynecomastia and reduced fertility. We describe the development of a transgenic model of SBMA expressing a full-length human AR (hAR) cDNA carrying 65 (AR(65)) or 120 CAG repeats (AR(120)), with widespread expression driven by the cytomegalovirus promoter. Mice carrying the AR(120) transgene displayed behavioral and motor dysfunction, while mice carrying 65 CAG repeats showed a mild phenotype. Progressive muscle weakness and atrophy was observed in AR(120) mice and was associated with the loss of alpha-motor neurons in the spinal cord. There was no evidence of neurodegeneration in other brain structures. Motor dysfunction was observed in both male and female animals, showing that in SBMA the polyglutamine repeat expansion causes a dominant gain-of-function mutation in the AR. The male mice displayed a progressive reduction in sperm production consistent with testis defects reported in human patients. These mice represent the first model to reproduce the key features of SBMA, making them a useful resource for characterizing disease progression, and for testing therapeutic strategies for both polyglutamine and motor neuron diseases.  相似文献   

6.
An unstable CAG triplet repeat expansion encoding a polyglutamine stretch within the ubiquitously expressed protein huntingtin is responsible for causing Huntington's disease (HD). By quantifying the repeat sizes of individual mutant alleles in tissues derived from an accurate genetic mouse model of HD we show that the mutation becomes very unstable in striatal tissue. The expansion-biased changes increase with age, such that some striatal cells from old HD mice contain mutations that have tripled in size. If this pattern of repeat instability is recapitulated in human striatal tissue, the concomitant increased polyglutamine load may contribute to the patterns of selective neuronal cell death in HD. Our findings also suggest that trinucleotide repeat instability can occur by mechanisms that are not replication-based.  相似文献   

7.
Machado-Joseph disease (MJD; MIM 109150) is a late-onset neurodegenerative disorder caused by the expansion of a polyglutamine tract within the MJD1 gene. We have previously reported the generation of human yeast artificial chromosome (YAC) constructs encompassing the MJD1 locus into which expanded (CAG)(76) and (CAG)(84) repeat motifs have been introduced by homologous recombination. Transgenic mice containing pathological alleles with polyglutamine tract lengths of 64, 67, 72, 76 and 84 repeats, as well as the wild type with 15 repeats, have now been generated using these YAC constructs. The mice with expanded alleles demonstrate a mild and slowly progressive cerebellar deficit, manifesting as early as 4 weeks of age. As the disease progresses, pelvic elevation becomes markedly flattened, accompanied by hypotonia, and motor and sensory loss. Neuronal intranuclear inclusion (NII) formation and cell loss is prominent in the pontine and dentate nuclei, with variable cell loss in other regions of the cerebellum from 4 weeks of age. Interestingly, peripheral nerve demyelination and axonal loss is detected in symptomatic mice from 26 weeks of age. In contrast, transgenic mice carrying the wild-type (CAG)(15) allele of the MJD1 locus appear completely normal at 20 months. Disease severity increases with the level of expression of the expanded protein and the size of the repeat. These mice are representative of MJD and will be a valuable resource for the detailed analysis of the roles of repeat length, tissue specificity and level of expression in the neurodegenerative processes underlying MJD pathogenesis.  相似文献   

8.
Myotonic dystrophy type 1 (DM1) is one of a growing number of inherited human diseases whose molecular basis has been implicated as the expansion of a trinucleotide DNA repeat. Expanded disease-associated alleles of >50 CTG repeats are unstable in both the germline and soma. Expansion of the unstable alleles over time and variation of the level of mutation between the somatic tissues of an individual are thought to account at least partially for the tissue specificity and progressive nature of the symptoms. We previously generated a number of transgenic mouse lines containing a large expanded CTG repeat tract that replicated a number of the features of unstable DNA in humans, including frequent sex-specific changes in allele length during intergenerational transmission. Small length change mutations were apparent in the somatic tissues of young mice in all of the lines generated, but the gross instability observed in human DM1 patients was not replicated. We now show that in one of the lines, Dmt -D, spectacular, expansion-biased, tissue-specific instability is observed in older mice. The highest levels of instability were detected in kidney with gains of >500 repeats, representing a tripling of allele length, in some cells. Mosaicism accumulated in an age-dependent manner, but the tissue specificity did not obviously correlate with cell turnover. Such gross somatic mosaicism was not observed in three other lines examined, further emphasizing a role for flanking DNA in modulating repeat stability.  相似文献   

9.
Increased length of a protein-coding CAG repeat within the androgen receptor gene appears to be the only type of mutation responsible for spino-bulbal muscular atrophy (SBMA or Kennedy disease). We have analysed a large 4-generation SBMA family and found that the mutant allele was unstable upon transmission from parent to child, with a documented variation from 46 to 53 repeats and a tendency to increase in size (7 increases and a single decrease in 17 events), which appeared stronger upon transmission from a male than from a female. Our results suggest also limited somatic instability of the abnormal allele, with observable variation of up to 2-3 repeats. This indicates that the behavior of the CAG repeat is similar to that observed for small premutations in the fragile X syndrome, or small abnormal alleles in myotonic dystrophy, two diseases which are caused by expansion of an unstable trinucleotide repeat.  相似文献   

10.
The human nuclear gene (POLG) for the catalytic subunit of mitochondrial DNA polymerase (DNA polymerase gamma) contains a trinucleotide CAG microsatellite repeat within the coding sequence. We have investigated the frequency of different repeat-length alleles in populations of diseased and healthy individuals. The predominant allele of 10 CAG repeats was found at a very similar frequency (approximately 88%) in both Finnish and ethnically mixed population samples, with homozygosity close to the equilibrium prediction. Other alleles of between 5 and 13 repeat units were detected, but no larger, expanded alleles were found. A series of 51 British myotonic dystrophy patients showed no significant variation from controls, indicating an absence of generalised CAG repeat instability. Patients with a variety of molecular lesions in mtDNA, including sporadic, clonal deletions, maternally inherited point mutations, autosomally transmitted mtDNA depletion and autosomal dominant multiple deletions showed no differences in POLG trinucleotide repeat-length distribution from controls. These findings rule out POLG repeat expansion as a common pathogenic mechanism in disorders characterised by mitochondrial genome instability.  相似文献   

11.
Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in exon 1 of a novel gene. The HD protein (huntingtin) plays a critical role in early embryonic development since homozygous targeted disruption of the murine HD gene results in embryonic lethality by day 7.5. To rescue this phenotype by transgene based huntingtin expression it is therefore essential to express the protein early enough in development in the appropriate cells. Since YAC based transgenes are known to be regulated in an appropriate temporal and tissue-specific manner, we sought to rescue the embryonic lethality by breeding YAC transgenic mice expressing human huntingtin with mice heterozygous for the targeted disruption. We generated viable offspring homozygous for the disrupted murine HD gene but expressing human huntingtin derived from the YAC. This result clearly shows that YAC transgene based expression of huntingtin occurs prior to 7.5 days gestation. Additionally, we show that human huntingtin expression in YAC transgenic mice follows an identical tissue distribution and subcellular localisation pattern as that of the murine endogenous protein and that expression levels of 2-3 times endogenous can be achieved. This shows that human huntingtin under the influence of its native promoter, despite differences to the murine protein, is functional in a murine background and can compensate for loss of the murine protein. These results show that YAC transgenic approaches are a particularly promising route to producing an animal model for disorders associated with CAG expansion.   相似文献   

12.
The expansion of CAG.CTG repeat sequences is the cause of several inherited human disorders. Longer alleles are associated with an earlier age of onset and more severe symptoms, and are highly unstable in the germline and soma with a marked tendency towards repeat length gains. Germinal expansions underlie anticipation; whereas age-dependent, tissue-specific, expansion-biased somatic instability probably contributes toward the progressive nature and tissue-specificity of the symptoms. The mechanism(s) of repeat instability is not known, but recent data have implicated mismatch-repair (MMR) gene mutS homologues in driving expansion. To gain further insight into the expansion mechanism, we have determined the levels of somatic mosaicism of a transgenic expanded CAG.CTG repeat in mice deficient for the Pms2 MMR gene. Pms2 is a MutL homologue that plays a critical role in the downstream processing of DNA mismatches. The rate of somatic expansion was reduced by approximately 50% in Pms2-null mice. A higher frequency of rare, but very large, deletions was also detected in these animals. No significant differences were observed between Pms2(+/+) and Pms2(+/-) mice, indicating that a single functional Pms2 allele is sufficient to generate normal levels of somatic mosaicism. These findings reveal that as well as MMR enzymes that directly bind mismatched DNA, proteins that are subsequently recruited to the complex also play a central role in the accumulation of repeat length changes. These data suggest that somatic expansion results not by replication slippage, single stranded annealing or simple MutS-mediated stabilization of secondary structures, but by inappropriate DNA MMR.  相似文献   

13.
Dentatorubral-pallidoluysian atrophy (DRPLA) is one among an increasing number of hereditary neurodegenerative diseases determined as being caused by unstable expansion of CAG repeats coding for polyglutamine stretches. To investigate the molecular mechanisms underlying CAG repeat instability, we established three transgenic lines each harboring a single copy of a full-length human mutant DRPLA gene carrying a CAG repeat expansion. These transgenic mice exhibited an age- dependent increase (+0.31 per year) in male transmission and an age- dependent contraction (-1.21 per year) in female transmission. Similar tendencies in intergenerational instabilities were also observed in human DRPLA parent-offspring pairs. The intergenerational instabilities of the CAG repeats may be interpreted as being derived from the instability occurring during continuous cell division of spermatogonia in the male, and that occurring during the period of meiotic arrest in the female. The transgenic mice also exhibited an age-dependent increase in the degree of somatic mosaicism which occurred in a cell lineage-dependent manner, with the size range of CAG repeats being smaller in the cerebellum than in other tissues including the cerebrum, consistent with observations in autopsied tissues of DRPLA patients. Thus, the transgenic mice described in this study exhibited age- dependent intergenerational as well as somatic instabilities of expanded CAG repeats comparable with those observed in human DRPLA patients, and are therefore expected to serve as good models for investigating the molecular mechanisms of instabilities of CAG repeats.   相似文献   

14.
目的 对Kennedy病家系进行临床表型和雄激素受体(androgen receptor,AR)基因突变分析.方法 收集Kennedy病家系2例患者和6例家系成员,对先证者进行神经系统查体,常规检测神经电生理、肌电图、血清肌酸激酶(creatine kinase,CK).抽取8例样本的外周静脉血,提取基因组DNA,PCR扩增AR基因第1号外显子中的CAG重复片段,PCR产物经1.5%琼脂糖凝胶电泳,男性样本进行DNA直接测序.通过毛细胞电泳片段分析技术明确患者及家系成员AR基因第1外显子CAG序列的重复数.结果 2例患者肌电图均显示感觉、运动神经受累及,血清CK均增高,经AR基因CAG重复序列分析,2例患者(Ⅲ1和Ⅲ3)CAG的重复数分别为58次和54次,并检出了4例女性携带者(Ⅱ1、Ⅱ3、Ⅲ5和Ⅳ1),Ⅱ1携带者CAG的重复数为22/58次,Ⅱ3携带者CAG的重复数为22/54次,Ⅲ5携带者CAG的重复数为24/54次,Ⅳ5携带者CAG的重复数为20/61次,2例表型正常男性成员的CAG的重复数均为24次.结论 CAG重复在本家系中存在不稳定遗传.基因诊断可作为Kennedy病诊断的可靠依据.Kennedy病患者进行AR基因突变检测可帮助家系成员进行遗传咨询,对该病的治疗和预防有重要意义.  相似文献   

15.
The analysis of somatic CAG triplet variation in lymphoblastoid cell lines from subjects carrying alleles of intermediate length (IA(33CAG) and IA(34CAG)) in Huntington disease (HD) gene disclosed instability in the DNA of the person, from whom a new expansion mutation of 45 triplets originated. The triplet size increased after about 30 passages in cell cultures in lymphoblasts with the IA(34) genotype. Lymphoblasts may provide an appropriate model for studying repeat instability in subjects with poly(CAG) repeat disorders. HD shows somatic, in addition to germ-line instability, highlighting the propensity to somatic CAG variation in human cells even with repeat numbers under the expanded edge. Factors potentially cis acting with the mutation, other than those reported in this study (CCG polymorphic stretch, the deletion of the glutamic acid residue at position 2642 and the 4-codon segment between CAG and CCG polymorphisms), should be searched for and analyzed.  相似文献   

16.
Clinical Aspects of CAG Repeat Diseases   总被引:5,自引:0,他引:5  
Seven neurodegenerative disorders are known to be caused by unstable expansions of the trinucleotide CAG within human genes, and more will be discovered in the coming years. These disorders share some clinical similarities, as well as some differences, which are summarized here. These diseases have unusual clinical genetic properties related to the dynamic nature of CAG repeat expansions, including instability of the repeat expansion in meiosis, particularly male meiosis; a strong correlation between onset age and size of the repeat expansion; anticipation (earlier disease onset in succeeding generations); new mutations arising from unstable, mutable alleles with a high‐normal CAG repeat number; and reduced penetrance for alleles in the lowaffected range. Much more remains to be learned about the molecular biology and clinical pathophysiology of this new class of genetic diseases.SummaryIn the last six years, seven neurodegenerative diseases have been found to be caused by expansions of intragenic CAG repeat sequences. The diseases share a variable (usually adult) age of onset, which is highly dependent on the length of the CAG repeat, and effects on multiple systems within the central and peripheral nervous systems. The cerebral cortex is not a primary site of pathology for any of the diseases, and organs other than the nervous system are not primarily affected (except for SBMA). The diseases differ in their primary site of neuropathology, and for that reason have widely varying neurologic profiles. The distributions of normal and abnormal CAG repeat sizes vary among the diseases, and suggest that different mechanisms of mutagenesis or disease pathogenesis could exist for the different disorders.The dynamic nature of trinucleotide repeat mutations has clarified a number of clinical and genetic observations in these diseases. New mutations arising from mutable normal alleles have been reported for some of the diseases. The tendency to further expansion of an expanded allele provides a molecular correlate to the clinical observation of anticipation (171). Sex‐ and disease‐dependent meiotic instability correlates with the observation of a paternal bias among juvenile onset cases for HD, SCA1 and DRPLA. Finally, reduced penetrance for alleles at the low end of the abnormal range has been observed for some (but not all) diseases in the group. Detection of CAG repeat expansions is relatively easy and inexpensive in the clinical laboratory, and molecular diagnosis has greatly improved diagnostic accuracy for this group of disorders. However, a full understanding of the biology and pathophysiology of this new class of mutations is still to come, and is awaited eagerly by clinicians and patients alike.  相似文献   

17.
18.
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the unstable expansion of a cytosine‐adenine‐guanine (CAG)/cytosine‐adenine‐adenine (CAA) repeat in the ATXN2 gene, which normally encodes 22 glutamines (Q22). A large study was conducted to characterize the CAG/CAA repeat intergenerational instability in SCA2 families. Large normal alleles (Q24‐31) were significantly more unstable upon maternal transmissions. In contrast, expanded alleles (Q32‐750) were significantly more unstable during paternal transmissions, in correlation with repeat length. Significant correlations were found between the instability and the age at conception in paternal transmissions. In conclusion, intergenerational instability at ATXN2 locus is influenced by the sex, repeat length and age at conception of the transmitting parent. These results have profound implications for genetic counseling services.  相似文献   

19.
Recently, moderate (CAG)>20 repeat expansions in the alpha1A-voltage- dependent calcium channel gene (CACNL1A4) have been identified in a previously unmapped type of SCA which has been named SCA6. We investigated the (CAG)n repeat length of the CACNL1A4 gene in 733 patients with sporadic ataxia and in 46 German families with dominantly inherited SCA which do not harbor the SCA1, SCA2, or MJD1/SCA3 mutation, respectively. The SCA6 (CAG)n expansion was identified in 32 patients most frequently with late manifestation of the disease. The (CAG)n stretch of the affected allele varied between 22 and 28 trinucleotide units and is therefore the shortest trinucleotide repeat expansion causing spinocerebellar ataxia. The (CAG)n repeat length is inversely correlated with the age at onset. In 11 parental transmissions of the expanded allele no repeat instability has been observed. Repeat instability was also not found for the normal allele investigating 431 meioses in the CEPH families. Analyzing 248 apparently healthy octogenerians revealed one allele of 18 repeats which is the longest normal CAG repeat in the CACNL1A4 gene reported. The SCA6 mutation causes the disease in approximately 10% of autosomal dominant SCA in Germany. Most importantly, the trinucleotide expansion was observed in four ataxia patients without obvious family history of the disease which necessitates a search for the SCA6 (CAG)n expansion even in sporadic patients.   相似文献   

20.
Intraneuronal protein aggregates of the mutated huntingtin in Huntington's disease (HD) brains suggest an overload and/or dysfunction of the ubiquitin-proteasome system (UPS). There is a general inhibition of the UPS in many brain regions (cerebellum, cortex, substantia nigra and caudate-putamen) and skin fibroblasts from HD patients. In the current experiment, the widely used mutant huntingtin-exon 1 CAG repeat HD transgenic mice model (R6/2) (with 144 CAG repeat and exon 1) during late-stage pathology, had increases in proteasome activity in the striatum. However, this discrepancy with HD patient tissue was not apparent in the mutant CAG repeat huntingtin full-length HD (YAC72) transgenic mouse model during post-symptomatic and late-stage pathology, which then also showed UPS inhibition similar to HD patients' brains. In both types of HD model mice, we determined biochemical changes, including expression of brain-derived neurotrophic factor (BDNF) and mitochondrial complex II/III (MCII/III) activities related to HD pathology. We found increases of both BDNF expression, and MCII/III activities in YAC72 transgenic mice, and no change of BDNF expression in R6/2 mice. Our data show that extreme CAG repeat lengths in R6/2 mice is paradoxically associated with increased proteasome activity, probably as a cellular compensatory biochemical change in response to the underlying mutation. Changes in HD patients for UPS function, BDNF expression and MCII/III activity are only partially modeled in R6/2 and YAC72 mice, with the latter at 16 months of age being most congruent with the human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号