首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
水稻叶片形态相关突变体的挖掘是进行水稻功能基因组学研究和株型改良的重要基础.本研究从60Co-γ辐射的籼稻粤丰B后代中鉴定一个卷叶突变体,命名为rl11(t),该突变体表型为株高降低、叶片卷曲变窄、叶脉数目减少且发育异常,同时对生长素的敏感性降低.遗传分析表明,该突变性状受一个隐性单基因控制.利用SSR标记将卷叶基因定位在位于水稻第4染色体上RM6089和RM124之间,在该基因附近区域发展了32对新的STS标记,将Rl11(t)精细定位在BAC克隆AL606645上STS4-25和STS4-26之间,物理距离约为31.6kb,为最终克隆目标基因奠定了基础.  相似文献   

2.
一个水稻窄叶突变体的鉴定和基因定位   总被引:6,自引:1,他引:5  
从粳稻品种“中花11”转基因后代中发现了一个窄叶突变体. 突变体表现为植株矮化、生育期延迟、叶片变窄及内卷和结实率降低等一系列突变表型. 窄叶突变体的剑叶在饱和光下净光合速率显著低于野生型, 在灌浆期剑叶的气孔导度和蒸腾速率也明显低于野生型. 遗传学分析表明, 该窄叶突变体表型受一对隐性核基因控制. 通过对突变体T1代和T2后代的分子检测发现, 该突变体表型非T-DNA插入引起. 利用籼粳杂交F2群体对突变体位点进行了基因定位, 将其定位在第12染色体长臂上SSR标记RM7018和RM3331之间. 与经典的形态标记nal3(cul3)位于相同染色体区段, 故将该突变体暂定名为nal3(t). 随后, 利用已公布的水稻序列和SSR标记, 开发了6对新的STS标记, 进一步将窄叶基因nal3(t)定位在NS10和RH12-8之间, 遗传距离分别为0.58和0.26 cM, 物理距离约136 kb, 为进一步克隆nal3(t)打下了基础.  相似文献   

3.
叶片是作物进行光合作用的重要器官,其发育包括叶色和叶形两部分,研究水稻叶片的发育机理对于提高水稻产量和品质具有重要的意义.本研究利用EMS诱变水稻籼型恢复系缙恢10号,获得了一个窄叶白化突变体nul1(narrow and upper-albino leaf1).田间种植情况下,nul1叶片全生育期均变窄,且叶片正面白化、背面绿色正常,叶绿素含量显著下降.nul1叶片变窄主要是次叶脉数减少造成的.与野生型相比,nul1生育期延迟约8天左右,有效穗、结实率和千粒重等农艺性状显著或极显著下降.遗传分析表明,窄叶和叶片正面白化性状共分离,受同一隐性核基因控制,利用分子标记最终将调控基因Nul1定位在第7染色体长臂Indel标记Ind07-1与SSR标记RM21637之间,物理距离仅75kb,包含8个预测基因,为下一步基因的克隆和功能研究奠定了基础.  相似文献   

4.
衰老是一个主动的过程,包括细胞结构、新陈代谢、基因表达有序发生变化,对植物生存繁衍具有积极的意义,但早衰则对农业生产会产生重要影响,不利于经济性状的获得,研究早衰的分子机理具有重要的意义.利用甲基磺酸乙酯诱变恢复系缙恢10号获得了一个叶片早衰突变体,5叶期前叶片正常绿色,从6叶至剑叶每张叶片从叶尖到叶基部逐渐衰老,叶绿体膜结构破坏、光合色素含量和光合能力及可溶性蛋白含量显著下降,SOD酶活性异常.遗传分析显示该突变性状受一显性单基因控制,暂命名为psl3(presenescing leaf3).利用分子标记将PSL3基因定位于第7染色体标记c7sr1与ID10之间,物理距离为53.5kb,为该基因的图位克隆奠定了基础.  相似文献   

5.
利用奇妙香(QMX)为轮回亲本,与卷叶珍汕97B(JZB)杂交并回交的BC4F2和BC4F3两群体为研究材料,对卷叶性状进行了遗传分析,并对卷叶基因进行精细定位.遗传分析表明,卷叶性状主要受1对不完全隐性主基因的控制,命名为rl(t),并同时受到数量性状基因和或环境的影响.利用500个SSR标记和新开发的15个InDel标记,通过BSA法在卷叶DNA池和平展叶DNA池间筛选到8个多态性标记,并用MAPMAKER/EXP3.0构建遗传连锁图.基因定位方法采用复合区间作图法(CIM).利用BC4F2分离群体将rl(t)初步定位于第2染色体长臂,位于标记InDel 112-RM3763之间,两标记之间的遗传距离为2.4cM,rl(t)距离InDel 112约1.0cM.为精细定位rl(t),从BC4F2代经标记选择得到1个中度卷叶植株,自交扩繁成855株个体的BC4F3代株系,另发展4个新的InDel标记.连锁分析表明,InDel 112.6和InDel 113位于标记InDel 112和RM3763之间.利用BC4F3株系中分离出的191个卷叶株和185个平展叶株,将rl(t)定位于InDel 112、6-InDel113之间,物理距离为137kb、对该区段进行了初步的侯选基因分析,推测rl(t)可能参与了microRNA(miRNA)系统对叶片发育的调控.  相似文献   

6.
水稻(Oryza sativa L.)叶形和叶色直接影响光能利用,最终影响其产量和品质,是水稻重要的农艺性状.通过甲基磺酸乙酯诱变籼稻缙恢10号发现了1个遗传稳定的水稻条纹窄叶突变体,暂命名为nsl1.nsl1在苗期叶片呈浅白色,拔节期后出现平行于叶脉分布的白色条纹,而且其叶片显著窄于野生型缙恢10号.nsl1突变体的白色条纹部位细胞内部叶绿体严重解体,叶绿素含量显著下降.荧光参数F0,Fv/Fm,?PSⅡ,qP和ETR均显著低于野生型,光合效率显著降低.nsl1的叶形叶色及生理的变化最终引起nsl1突变体株型矮小和产量相关性状的明显减小.该条纹窄叶性状受一对单隐性核基因控制,被定位于第3染色体长臂InDel 16与InDel 12之间,物理距离为204 kb,在该区域尚未发现与已报道的叶色或窄叶相类似的基因.本研究为NSL1基因克隆和功能分析奠定了良好基础.  相似文献   

7.
一个水稻短生育期突变体sgp(t)的遗传分析及基因定位   总被引:1,自引:0,他引:1  
在优良迟熟恢复系明恢86的转基因后代中, 发现了一个非T-DNA插入引起的短生育期突变体(暂命名short growth period, 简称sgp(t)). 该突变体对光周期反应不敏感, 在不同生态区域与不同播种期, 平均抽穗期(40.9±2.1)~(62.4±5.2) d, 比野生型明恢86早35~50 d. 通过对sgp(t)突变体与29个不同遗传背景的亲本(包括感光和非感光的籼稻、粳稻及爪哇稻品种)杂交后代抽穗期分析, 结果发现, 在福州市夏季种植(4月30日播种), F1抽穗均表现较迟熟亲本 早, 而较sgp(t)略迟, 平均抽穗期(52.0±1.3)~(63.4±2.3) d, 表明sgp(t)是一个不完全显性突变体, 能够显著地缩短水稻的生育期. 进一步分析sgp(t)突变体与野生型明恢86, 93-11, 闽恢3301和博白B等4个品种的杂种F2群体抽穗分布发现, 分离群体后代中出现极早熟、较早熟和迟熟3种类型, 其极早熟和较早熟植株数之和与迟熟植株数之比符合3:1, 进一步表明sgp(t)由一对不完全显性基因控制. 以F2代(sgp(t)×93-11)中的极早熟株和迟熟株为定位群体, 应用微卫星标记将sgp(t)基因定位在第6染色体的RM3628和RM439之间, 随后利用已经公布的水稻基因组序列, 在sgp(t)基因附近区域新开发了6个标记, 将sgp(t)基因进一步定位在NSSR0617~NSSR0683之间, 遗传距离分别为0.5和0.6 cM, 物理距离约436 kb. 定位结果显示sgp(t)不同于目前报道的所有早熟和迟熟基因, 是一个控制水稻生育期的新基因.  相似文献   

8.
利用陆地棉遗传背景的海岛棉染色体16置换系材料Sub16和陆地棉多基因标记系T586创建了含1259个单株的F2作图群体, 结合本实验室最新的栽培四倍体棉种种间分子遗传图谱上染色体16的标记信息, 利用分子标记技术, 对红株基因R1进行精细定位. 在F2分离群体中, 红株性状分离比符合孟德尔1:2:1的分离, 进一步证明该性状是由一不完全显性单基因控制. 利用JoinMap 3.0连锁分析软件, 使用含237个单株的F2小群体完成红株基因R1的初级定位, 进一步利用含1259个单株的F2大群体将该基因精细定位在NAU4956和NAU6752之间, 与最近标记的遗传距离为0.49 cM. 研究结果为进一步克隆该基因及培育红色彩棉转基因品种提供了研究基础.  相似文献   

9.
水稻阶段性返白突变体的鉴定和候选基因分析   总被引:4,自引:0,他引:4  
张向前  李晓燕  朱海涛  王涛  解新明 《科学通报》2010,55(23):2296-2301
从粳稻品种中花11 的后代中发现了一个叶色突变体sgra, 该突变体幼苗期叶色正常, 而6~8 叶期以后新生叶白化, 随后白化叶转绿. 突变体的遗传分析表明, 该突变体表型受1 对隐性核基因控制. 利用籼粳杂交F2群体对突变位点进行了基因定位, 将其定位于水稻第11 染色体的2 个标记ID343-11 和PSM415 之间, 遗传距离分别为0.9 和1.0 cM. 随后, 利用已公布的水稻序列和SSR标记, 在两标记间发展了9 对新的标记, 进一步将SGRA基因定位在IDM-2 和RM26739 之间, 物理距离约为17.6 kb. 对野生型和突变体候选区段基因组DNA 测序分析表明, 候选基因编码一个ABC 转运蛋白.  相似文献   

10.
叶片表面茸毛是水稻形态学特征上的一个重要农艺性状,对水稻的生长及生理特性有着重要的影响.应用叶片具有茸毛特征的水稻品种75-1-127,无茸毛水稻品种明恢63,光身稻品种Lemont,9311分别杂交产生F1及F1自交产生的F2群体对水稻茸毛基因进行遗传学分析,结果表明,水稻茸毛性状为一对细胞核基因控制的显性性状.应用75-1-127/明恢63的F2隐性分离群体,结合分离群体分析法(BSA)和隐性群体分析法(RCA),并通过Mapmaker3.0/MapDraw软件分析,将水稻茸毛基因GL6初步定位在水稻第6号染色体上,位于SSR标记RM20491和RM20547之间,且两标记与该茸毛基因的相对遗传距离分别为7.2和2.2cM.进一步构建大的F2分离群体并同时挖掘新的SSR标记及插入缺失InDel标记用于茸毛基因GL6的精细定位,将茸毛基因GL6精细定位在插入缺失标记InDel-106和InDel-115之间,且两标记与该茸毛基因的相对遗传距离分别为0.3和0.1cM,结合GeneBank数据库分析,在该精细定位区域内,对应粳稻日本晴和籼稻9311的物理距离分别为79和116.82kb,分别注释有7个和8个预测基因,为进一步的基因克隆和功能研究奠定了基础.  相似文献   

11.
正常的伤口修复能力对于生存与健康十分重要。皮肤伤口修复是一个极其复杂的生物学过程,涉及多种不同类型细胞、细胞外基质和细胞因子在时间、空间上有序的相互作用,最终完成皮肤屏障修复与组织内稳态维持。文章总结了伤口修复的主要过程,并重点阐述不同类型细胞在损伤修复过程中的作用,讨论了无疤痕修复的潜在机制。  相似文献   

12.
热带巨型叶植物芭蕉叶片内结构异质性   总被引:1,自引:0,他引:1  
李帅  曹坤芳 《科学通报》2014,59(6):522-528
叶片是植物进行光合作用的主要场所,叶片面积是决定叶片光合作用的重要因子之一.以往对于叶片的解剖结构和生理功能的研究中,常常忽略同一叶片不同部位的结构及功能的差异,尤其是对于某些巨大叶片的结构和功能的异质性更是缺乏了解.为什么具有巨大叶片的植物在自然界十分稀少仍然是科学之谜.本研究选取了具有典型巨型叶片的单子叶植物芭蕉(Musa balbisiana Colla)作为实验材料,测定了叶片不同部位的结构和解剖特征.结果发现,沿主脉方向从叶片基部到叶片尖端,主脉导管直径、叶片厚度、保卫细胞长度呈剧烈下降趋势,比叶重在上部约1/2处呈下降趋势,而栅栏组织和海绵组织的比(P/S值)和气孔密度呈增长趋势,叶绿素含量、叶脉密度和气孔面积指数则无明显变化.沿平行脉从叶片中部到叶片两侧边缘,叶片厚度和比叶重呈现剧烈下降趋势,叶绿素含量、气孔密度和气孔面积指数在边缘约1/3范围内剧烈下降,栅栏组织和海绵组织的比和叶脉密度则呈现上升的趋势.从叶基到叶顶端主脉的导管直径急剧减少可能会影响叶片顶端的水分供应,而叶片两侧边缘气孔面积指数的明显减小、再加上大叶片水汽界面层厚会使边缘部位蒸腾散热功能受到抑制,从而抑制该部位的生理功能,这些因素可能导致芭蕉叶片面积不能继续增大.与叶片小一些的海芋大型叶相比,芭蕉叶内结构的异质性更加强烈.  相似文献   

13.
采用线粒体控制区和微卫星DNA分子标记,对梧州繁殖中心圈养黑叶猴的遗传多样性、圈养个体来源地以及个体间的亲缘关系进行分析.在355 bp线粒体控制区序列中发现了35个核苷酸变异位点,包括3个转换、29个颠换和3个插入/缺失,这些变异位点共定义了13种单倍型.圈养黑叶猴核苷酸多样性(π)为0.027,单倍型多样性(h)为0.627.采用11对微卫星引物对圈养黑叶猴DNA进行扩增,共检测到47个等位基因,每个座位的平均等位基因数为4.18.平均期望杂合度(He)为0.559,观测杂合度(Ho)为0.551.与其他濒危灵长类动物相比,圈养黑叶猴遗传多样性处于中等水平.将贵州、广西、越南野生黑叶猴和圈养黑叶猴单倍型进行比较,发现梧州繁殖中心圈养黑叶猴个体来自广西境内和广西与越南交界地区.采用微卫星数据分析了圈养黑叶猴亲缘关系和遗传距离,选取3只雄猴和7只雌猴组建了3个家庭单元用于野外放归.  相似文献   

14.
虫害诱导的水稻挥发物抑制水稻病原菌的生长   总被引:3,自引:0,他引:3  
卢凯  李欣  周嘉良  解晓军  戚舒  周强 《科学通报》2010,55(30):2925-2930
虫害诱导的植物挥发物在调节植物、植食性昆虫及其天敌的相互关系以及植物与植物之间的化学通讯中有重要作用. 为了阐明植物挥发物功能的多样性, 研究了虫害诱导的水稻挥发物对植物病原菌生长的影响. 结果表明, 供试的7种虫害诱导的水稻挥发物对稻瘟病菌Pyricularia grisea Sacc. 和水稻纹枯病菌Rhizoctonia solani Kuhn. 的生长均有抑制作用. 挥发物的种类以及不同的处理浓度导致了抑制作用间的差异, 其中绿叶性气味物质(E)-2-己烯醛和(E)-2-己烯-1-醇对病原菌抑制作用最强, 另外萜烯类物质中芳樟醇对其也有明显的抑制. 虫害诱导的挥发物对植物病原菌生长的抑制说明了植物间接防御物质具有对植物病原菌直接防御的功能, 植物挥发物在植物病虫害防治中的潜力巨大.  相似文献   

15.
豌豆AGAMOUS同源基因功能的初步研究   总被引:1,自引:0,他引:1  
徐雷  宋伟杰  王利琳 《科学通报》2009,54(20):3207-3212
豌豆是研究植物发育遗传的经典模式植物. 虽然已经克隆到了一些与豌豆花发育有关的基因, 但是由于豌豆基因组大、序列信息少以及缺少有效的遗传转化方法, 豌豆花发育研究的发展受到了限制. 病毒诱导的基因沉默(virus induced gene silencing, VIGS)技术是近年来发展起来的一种反向遗传学快速研究基因功能的方法. 本文利用基于豌豆早褐病毒 (pea early browning virus, PEBV)的VIGS体系研究了豌豆中AGAMOUS同源基因(Pisum sativum AGAMOUS homologous genes, PsAGs)的功能. 在PsAGs沉默之后, 豌豆花表现为雄蕊花瓣化, 心皮开裂, 内生出一朵不完整的花. 半定量RT-PCR分析结果显示, 在沉默植株中PsAGs的mRNA转录水平显著下降. mRNA原位杂交结果显示, 花发育早期, PsAG基因在花原基中央表达, 后期在第三、四轮花器官中表达, 表明在豌豆有多个AGAMOUS同源基因. 实验结果表明, 豌豆中可能存在多个AGAMOUS同源基因, 彼此间功能冗余且相对保守, 同时暗示着在对基因家族成员进行功能研究时, VIGS是有效手段之一.  相似文献   

16.
白血病发病原理研究:“多次打击”学说   总被引:1,自引:0,他引:1       下载免费PDF全文
王月英  陈赛娟 《自然杂志》2008,30(3):128-137
白血病是一种基因组发生动态变化的造血干/祖细胞疾病,染色体易位和/或基因突变是常见的遗传学异常。近来,研究提示白血病的发生多遵循“多次打击”模式。在慢性粒细胞白血病中,GATA-2突变可能与BCR-ABL共同作用导致“急变”;在M2b型急性髓性白血病中,C-KIT突变可能是在AML-ETO基础上的再次遗传学异常;在TEL-AML1相关的儿童急性淋病细胞白血病中,正常TEL基因丢失作为第二次打击而致病。作者以上述三种白血病为例,阐述其发病原理以及靶向治疗研究所取得的进展。  相似文献   

17.
张禾  李磊 《自然杂志》2021,43(2):96-102
急性心肌梗死是因冠状动脉供血中断引起的急性、持续性局部缺血、缺氧引起的心肌坏死。心肌梗死可促进骨髓及髓外造血器官中造血干祖细胞的动员和分化,进而在心脏梗死部位的炎症反应和心脏功能修复中发挥重要作用,对其具体分子机制的研究将为临床治疗心肌梗死提供更多机遇。文章主要论述心肌梗死后造血系统变化。  相似文献   

18.
徐建欣  王云月  姚春  刘云霞  汤淼 《科学通报》2012,(Z2):2705-2714,2781,2783
利用34个籼粳特异插入缺失(insertion/deletion,InDel)分子标记和24个SSR分子标记对云南113个陆稻品种的籼粳分化与遗传变异进行分析.InDel分子标记鉴定结果表明,云南陆稻以粳稻(粳型、偏粳型)品种为主,占总品种的83.2%.聚类结果显示,云南陆稻品种明显聚为4大类群(籼型、偏籼型、粳型、偏粳型),支持InDel分子标记鉴定结果.重新将云南陆稻品种的种植区域划分为2个:(1)海拔1250m以下为籼粳稻混合种植区;(2)海拔1250m以上为粳稻种植区.SSR遗传多样性分析结果表明,云南陆稻籼粳亚种间遗传多样性均很丰富,籼稻品种的遗传多样性高于粳稻品种且差异显著.分子方差分析显示,云南陆稻遗传变异主要来自亚种内(占总变异81%),亚种间遗传变异占19%.不同地区间陆稻种质资源遗传多样性比较分析表明,滇西南与滇南地区存在丰富的遗传变异,是云南陆稻品种遗传多样性的分布中心.半山云雾多湿区作为云南陆稻品种的传统种植区域,保留大量的遗传变异与稻种资源,是开展陆稻种质资源保护、利用的核心区域.  相似文献   

19.
植物叶片最大羧化速率对多因子响应的模拟   总被引:1,自引:0,他引:1  
张彦敏  周广胜 《科学通报》2012,(13):1112-1118,1183,1186
植物叶片最大羧化速率是表征植物光合能力的重要参数,建立植物叶片最大羧化速率的模拟模型将有助于准确预测植物的光合作用和陆地生态系统生产力.植物叶片最大羧化速率与环境因子之间存在诸多相关性,分析植物叶片最大羧化速率与环境因子的相关关系是建立植物叶片最大羧化速率模拟模型的有效途径.对来自104篇文献的植物叶片最大羧化速率数据及其对应的环境因子进行整理和分析发现,植物叶片最大羧化速率受温度、土壤含水量、CO2浓度以及土壤含氮量的显著影响.其中,温度、土壤含水量和CO2浓度均与植物叶片最大羧化速率呈单峰型曲线关系,土壤含氮量与植物叶片最大羧化速率呈显著的线性关系.据此,建立了温度、土壤含水量、CO2浓度以及土壤含氮量综合影响的植物叶片最大羧化速率模型.验证表明,该模型能较好地模拟不同环境条件下植物叶片的最大羧化速率,为陆地生态系统模型准确模拟植物光合作用提供了参数依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号