首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A test plant has been constructed for measurements of local heat-transfer coefficients and frictional pressure drops on the shell side of spiral-wound LNG heat exchangers. Measurements have been performed with gas flow, liquid film flow and two-phase shear flow. This paper focuses on the measurements and the results from the gas flow measurements. 221 gas flow heat-transfer measurements and 80 gas flow frictional pressure drop measurements have been performed at a Re-number range of 5000-170 000 with nitrogen, methane, ethane and methane/ethane mixture as test fluids.  相似文献   

2.
环路型脉动热管的工质流动和传热特性实验研究   总被引:13,自引:0,他引:13  
建立了部分可视化的环路型铜-乙醇脉动热管试验台,研究了充液率、倾斜角度、环路数目等因素对脉动热管传热性能的影响。结果表明:不能形成脉动效应时工质的流型是间歇振动,形成脉动效应时工质的流型是弹状流或环状流;最佳倾角为70°~90,°最佳充液率在50%左右;热阻随着环路数目的增加而减小。  相似文献   

3.
Heat transfer from a surface having constant heat flux subjected to oscillating flow in a vertical annular liquid column is investigated experimentally. The oscillation of water column in annuli is created using a piston cylinder mechanism. The experiments are carried out for four different oscillation frequencies, three amplitudes and three heat fluxes while the other parameters remain constant. The cycle-averaged values are considered in the calculation of heat transfer using the control volume approximation. Based on the experimental data, an empirical equation is obtained for the cycle averaged Nusselt number as a function of kinetic Reynolds number and dimensionless amplitude.  相似文献   

4.
In this paper an Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on heat transfer and fluid flow characteristics of helicoidal double-pipe heat exchangers using some numerically investigated and compared with those to experimental results for training and test data. In this way, overall heat transfer coefficient (Uo) and inner and annular pressure drop (ΔPin, ΔPan) are modeled with respect to the variation of inner and annular dean number (Dein, Dean), inner and annular Prandtl number (Prin, Pran) and pitch of coil (B) which are defined as input (design) variables. Then, we divided these data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 75% of numerical-validated data. Twenty-five percent of primary data which had been considered for testing the appropriateness of the models was entered into ANFIS network models and results were compared by two statistical criterions (R2, RMSE). Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.  相似文献   

5.
This paper reports an experimental work on the convective heat transfer of nanofluids, made of γ-Al2O3 nanoparticles and de-ionized water, flowing through a copper tube in the laminar flow regime. The results showed considerable enhancement of convective heat transfer using the nanofluids. The enhancement was particularly significant in the entrance region, and was much higher than that solely due to the enhancement on thermal conduction. It was also shown that the classical Shah equation failed to predict the heat transfer behaviour of nanofluids. Possible reasons for the enhancement were discussed. Migration of nanoparticles, and the resulting disturbance of the boundary layer were proposed to be the main reasons.  相似文献   

6.
为了获得翅片间距Pf对平直翅片管换热器的传热与阻力特性的影响规律,根据相似模化原理对3种不同Pf的平直翅片管换热器进行了试验研究。结果表明:雷诺数Rea在4 000~8 000范围内,努赛尔数Nua数随Rea的增大而增加,欧拉数Eua随Rea的增大而降低;同一Rea下,Nua随Pf减小而增加,但增加不明显,Eua随Pf增大而降低;同一Rea下,Pf越大,综合流动传热性能越好,但实际换热面积会减小,需综合考虑。研究成果可为汽轮发电机平直翅片管换热器的结构和性能优化提供依据。  相似文献   

7.
以烃类物质(丙烷和正戊烷)作为工质,进行了紧凑式换热器中带有加工配置表面的管式换热元件池沸腾实验研究。其中,单管实验温度工况为253K ̄293K(饱和工质)。实验中所采用的换热元件为重入式结构加工配置表面的强化传热管和光管以及低助管。针对由45根光管或带有加工配置表面的管子所构成的叉排管束进行了实验研究,实验工质为丙烷和正戊烷,实验温度分别为两种工质在263K和308K之间的饱和和温度。并将所得实  相似文献   

8.
This communication documents the experimental investigation of the theoretical model for predicting the thermal performance of parallel flow microchannel heat exchangers subjected to external heat flux. The thermal model investigated in this communication is that previously developed by the authors of this communication; Mathew and Hegab [B. Mathew, H. Hegab, Application of effectiveness-NTU relationship to parallel flowmicrochannel heat exchangers subjected to external heat transfer, International Journal of Thermal Sciences 31 (2010) 76–85]. The validity of the theoretical model with respect to microchannel profile, hydraulic diameter, heat capacity ratio and degree of external heat transfer is checked. The microchannel profiles investigated are trapezoidal and triangular with hydraulic diameter of 278.5 and 279.5 μm, respectively. The influence of hydraulic diameter is analyzed using trapezoidal microchannels with hydraulic diameters of 231 and 278.5 μm. Experiments are conducted for heat capacity ratios of unity and 0.5 using the heat exchanger employing the trapezoidal microchannel with hydraulic diameter of 278.5 μm for purposes of validating the model. Experiments are done for all heat exchangers for two different levels of external heat transfer; 15% and 30% of the maximum possible heat transfer. Irrespective of the parameter that is investigated the experimental data are found to perfectly match with the theoretical predictions thereby validating the thermal model investigated in this communication.  相似文献   

9.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

10.
This paper presents the results of experimental research on shell-side heat transfer coefficient concerning 3 heat exchangers with helical coils. Measurements were carried in laboratory and the following correlation was found to be adequate Nu = 0.50 ? Re0.55 ? Pr 1/3 ? (η/ηw)0.14 where Re and Nu are based on shell-side hydraulic diameter.  相似文献   

11.
12.
Heat transfer augmentation in heat exchangers has been a key research topic in recent times. Over the years, many methods have been proposed for heat transfer enhancement, such as providing fins, changing the cross-sectional area of tubes, vortex generator, twisted tape inserts, and so forth. In addition to the above-mentioned techniques, corrugation of tubes was also proposed by a few authors who demonstrated that this method could effectively increase the heat transfer rate. To address the same in this study, the different corrugation profiles have been created with the help of CATIA software for the study. The simulations were performed using ANSYS R19.2. The results so obtained were used to calculate the various thermal and hydraulic perfoallrmance parameters of the heat exchanger with the help of macros created in MS Excel. The result shows that the use of corrugation on the inner tube of the heat exchanger increased the heat transfer coefficient, fanning friction factor, and rate of cooling by 5%–21%, 90%–355%, and 25.67%–157.40%, respectively, in case of the plain double-pipe heat exchanger for the mass flow rate variation of 5–25 kg/min. It is also observed that the smooth tube has more thermohydraulic performance as 1.2152.  相似文献   

13.
Heat transfer and pressure drop characteristics are investigated here using experimental and analytical techniques for a dimple plate heat exchanger. The analysis uses the log mean temperature difference method (LMTD) in all its calculations. Whilest the shell side flow highly resembles the flow over a rough or wavy plate, the tube side passage in these represents the flow over short hexagonal tube banks with the flowing across the sectional areas between the hexagons having the shape of a benzene ring. Local and global experimental measurements are carried out around the heat exchanger. Furthermore, analytical models for both sides of the heat exchanger were obtained from the literature. Reasonable cross match between experimental and analytical results could be obtained. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Three-dimensional simulations of four louver-tube junction geometries are performed to investigate the effect on louver and tube friction and heat transfer characteristics. Three Reynolds numbers, 300, 600 and 1100, based on bulk velocity and louver pitch are calculated. Strong three-dimensionality exists in the flow structure in the region where the angled louver transitions to a flat landing adjoining the tube surface, whereas the flow on the angled louver far from the tube surface is nominally two-dimensional. Due to the small spatial extent of the transition region, its overall impact on louver heat transfer is limited, but the strong unsteady flow acceleration on the top louver surface augments the heat transfer coefficient on the tube surface by over 100%. In spite of the augmentation, the presence of the tube lowers the overall Nusselt number of the heat exchanger between 25% and 30%. Comparisons with correlations derived from experiments on full heat exchanger cores show that computational modeling of a small subsystem can be used reliably to extract performance data for the full heat exchanger.  相似文献   

15.
以水为介质,采用k-ε模型,用数值模拟方法研究了5种不同结构的螺旋扭曲椭圆管换热器的管外壳程传热与流阻性能,并和采用椭圆管作为换热部件的换热器进行了比较.研究结果表明,螺旋扭曲椭圆管换热器壳程有较好的强化换热特性,螺旋扭曲椭圆管的几何尺寸和流体流动速度对壳程传热与流阻性能有重要影响.通过数值模拟所获得的规律为螺旋扭曲椭...  相似文献   

16.
This work presents an experimental analysis of the hydrodynamic and thermal performance of micro-heat exchangers. Two micro-heat exchangers, characterized by microchannels of 100 × 100 and 200 × 200 μm square cross-sections, were designed for that purpose. The fluid used was deionized water and there was no phase change along the fluid circuit. The fluid pressure drop along the heat exchanger and the heat transfer were measured and corrections were made to isolate the contribution of the microchannels. The results were compared with the predictions of the classical viscous flow and heat transfer theory. The main conclusions show that the experimental results fit well with these theories. No effects of heat transfer enhancement or pressure drop increase were observed as a consequence of the small scale of the microchannels.  相似文献   

17.
18.
The wall-particles heat transfer coefficient has been measured in small-scale rotary drum heat exchangers. Experiments have been conducted with nine granular materials of different nature, with particle diameters ranging from 194 μm to 4mm. The effects of rotational speed (1–40 rev min−1), filling degree (4–17%) and drum diameter (0.25 and 0.485 m) have been investigated. The experimental data have been correlated by a semi-empirical relationship, that includes a contact resistance at the wall, the heat capacity of the particles immediately adjacent to the wall and the heat penetration resistance of the bulk of the particle bed. The contact resistance is shown to be due to the roughness of the particles. A mean roughness height of 12 μm provides a good fit to the measured coefficients.  相似文献   

19.
The present probe is developed in order to accurately estimate in situ not only the convective exchange coefficient but also the fouling thickness of heat exchangers from a reliable transient state estimation method.The originality of the estimation method consists in considering a global response time of the system in fouling conditions to be compared to clean conditions. The sensitivity function is then built from the experimental signal without precise knowledge about the model or the absolute thermophysical properties. The reliability of the method is demonstrated in theoretical cases and with calibrated experiments.  相似文献   

20.
高效热泵系统性能研究一直是热泵空调领域普遍关注的热点问题,针对设计开发的双级套管串联式热泵系统。采用3D有限容积法和可实现的k-ε模型,数值分析入口流体温度、流动速度对换热系数以及内外管努塞尔数的影响规律。结果表明,降低入口水温或者增加入口制冷剂温度能够提高整体传热性能,Nui随着水和制冷剂流率的增加有所增加,而Nuo随着水流率的增加而增加,但随着制冷剂流率则增加而减小,Nui 和Nuo都随着水温的减小或制冷剂温度的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号