首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.  相似文献   

2.
3.
A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.  相似文献   

4.
Phenylamide fungicides have been widely used for the control of oomycete‐incited plant diseases for over 30 years. Insensitivity to this chemical class of fungicide was recorded early in its usage history, but the precise protein(s) conditioning insensitivity has proven difficult to determine. To determine the genetic basis of insensitivity and to inform strategies for the cloning of the gene(s) responsible, genetic crosses were established between Mefenoxam sensitive and intermediate insensitive isolates of Phytophthora infestans, the potato late blight pathogen. F1 progeny showed the expected semi‐dominant phenotypes for Mefenoxam insensitivity and suggested the involvement of multiple loci, complicating the positional cloning of the gene(s) conditioning insensitivity to Mefenoxam. Instead, a candidate gene strategy was used, based on previous observations that the primary effect of phenylamide compounds is to inhibit ribosomal RNA synthesis. The subunits of RNA polymerase I (RNApolI) were sequenced from sensitive and insensitive isolates and F1 progeny. Single nucleotide polymorphisms (SNPs) specific to insensitive field isolates were identified in the gene encoding the large subunit of RNApolI. In a survey of field isolates, SNP T1145A (Y382F) showed an 86% association with Mefenoxam insensitivity. Isolates not showing this association belonged predominantly to one P. infestans genotype. The transfer of the ‘insensitive’ allele of RPA190 to a sensitive isolate yielded transgenic lines that were insensitive to Mefenoxam. These results demonstrate that sequence variation in RPA190 contributes to insensitivity to Mefenoxam in P. infestans.  相似文献   

5.
致病疫霉(Phytophthora infestans)引起的晚疫病是马铃薯的一种毁灭性病害。有效控制马铃薯晚疫病需要明确致病疫霉的群体遗传结构特征。采用8对SSR引物对采自福建省福州、长乐、漳州2010年分离的95株马铃薯致病疫霉进行遗传多样性分析。结果共检测出21个等位基因和26个基因型。三个地点致病疫霉菌群体间的平均遗传分化系数FST为0.22,在8个位点中有5个位点的等位基因频率分布差异显著。三个群体的观测纯合度小于期望纯合度,观测杂合度大于期望杂合度,以无性生殖为主。结果表明福建群体的遗传多样性高,群体间的存在较高的遗传分化度。  相似文献   

6.
The increasing accessibility of mass isotopomer data via GC-MS and NMR technology has necessitated the use of a systematic and reliable method to take advantage of such data for flux analysis. Here we applied a nonlinear, optimization-based method to study substrate metabolism in cardiomyocytes using (13)C data from perfused mouse hearts. The myocardial metabolic network used in this study accounts for 257 reactions and 240 metabolites, which are further compartmentalized into extracellular space, cytosol, and mitochondrial matrix. Analysis of the perfused mouse heart showed that the steady-state ATP production rate was 16.6 +/- 2.3 micromol/min . gww, with 30% of the ATP coming from glycolysis. Of the four substrates available in the perfusate (glucose, pyruvate, lactate, and oleate), exogenous glucose forms the majority of cytosolic pyruvate. Pyruvate decaboxylation is significantly higher than carboxylation, suggesting that anaplerosis is low in the perfused heart. Exchange fluxes were predicted to be high for reversible enzymes in the citric acid cycle (CAC), but low in the glycolytic pathway. Pseudoketogenesis amounted to approximately 50% of the net ketone body uptake. Sensitivity analysis showed that the estimated flux distributions were relatively insensitive to experimental errors. The application of isotopomer data drastically improved the estimation of reaction fluxes compared to results computed with respect to reaction stoichiometry alone. Further study of 12 commonly used (13)C glucose mixtures showed that the mixtures of 20% [U-(13)C(6)] glucose, 80% [3 (13)C] glucose and 20% [U-(13)C(6)] glucose, 80% [4 (13)C] were best for resolving fluxes in the current network.  相似文献   

7.
Although sexual reproduction implies a cost, it represents an evolutionary advantage for the adaptation and survival of facultative sexual pathogens. Understanding the maintenance of sex in pathogens requires to analyse how host resistance will impact their sexual reproduction through the alteration of their life-history traits. We explored this experimentally using potato (Solanum tuberosum) and one of its pathogens, the heterothallic oomycete Phytophthora infestans. Sexual reproduction was highest on hosts favouring asexual multiplication of the pathogen, suggesting similar nutritional requirements for both sexual and asexual sporulation. Sexual reproduction was also highest on hosts decreasing the latent period, probably because of a trade-off between growth and reproduction. Distinguishing host effects on each pathogenic trait remains however uneasy, as most life-history traits linked to pathogenicity were not independent of each other. We argue that sexual reproduction of P. infestans is an adaptation to survive when the host is susceptible and rapidly destroyed.  相似文献   

8.
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.  相似文献   

9.
利RACE和重叠延伸相结合的方法,从经晚疫病菌接种诱导的马铃薯水平抗性材料叶片中克隆了一个POTHE 1基因(potato Phytophthora infestans induced hypersensitive response related protein gene)的全长cDNA.序列分析表明,该基因编码225个氨基酸,与烟草harpin诱导蛋白基因hinl有很高的同源性(编码区核苷酸和氨基酸序列分别为83%和81%).Southern杂交结果显示在马铃薯基因组中有2~3个拷贝.对其诱导表达模式研究表明:晚疫病病原菌接种36 h后,该基因表达迅速增加;机械伤害及茉莉酸(JA)处理能够诱导表达;渗透胁迫(NaCl浸泡)能够诱导其微弱表达;但水杨酸(SA)不能诱导表达.该基因可能和病原与寄主互作时寄主产生过敏反应及细胞生理性死亡有关.  相似文献   

10.
Today, environmental pollution is a serious problem, and bioremediation can play an important role in cleaning contaminated sites. Remediation strategies, such as chemical and physical approaches, are not enough to mitigate pollution problems because of the continuous generation of novel recalcitrant pollutants due to anthropogenic activities. Bioremediation using microbes is an eco-friendly and socially acceptable alternative to conventional remediation approaches. Many microbes with a bioremediation potential have been isolated and characterized but, in many cases, cannot completely degrade the targeted pollutant or are ineffective in situations with mixed wastes. This review envisages advances in systems biology (SB), which enables the analysis of microbial behavior at a community level under different environmental stresses. By applying a SB approach, crucial preliminary information can be obtained for metabolic engineering (ME) of microbes for their enhanced bioremediation capabilities. This review also highlights the integrated SB and ME tools and techniques for bioremediation purposes.  相似文献   

11.
Altered metabolism is linked to the appearance of various human diseases and a better understanding of disease-associated metabolic changes may lead to the identification of novel prognostic biomarkers and the development of new therapies. Genome-scale metabolic models (GEMs) have been employed for studying human metabolism in a systematic manner, as well as for understanding complex human diseases. In the past decade, such metabolic models – one of the fundamental aspects of systems biology – have started contributing to the understanding of the mechanistic relationship between genotype and phenotype. In this review, we focus on the construction of the Human Metabolic Reaction database, the generation of healthy cell type- and cancer-specific GEMs using different procedures, and the potential applications of these developments in the study of human metabolism and in the identification of metabolic changes associated with various disorders. We further examine how in silico genome-scale reconstructions can be employed to simulate metabolic flux distributions and how high-throughput omics data can be analyzed in a context-dependent fashion. Insights yielded from this mechanistic modeling approach can be used for identifying new therapeutic agents and drug targets as well as for the discovery of novel biomarkers. Finally, recent advancements in genome-scale modeling and the future challenge of developing a model of whole-body metabolism are presented. The emergent contribution of GEMs to personalized and translational medicine is also discussed.  相似文献   

12.
13.
由致病疫霉Phytophthora infestans引起的晚疫病是马铃薯生产上最严重的病害之一,认识其群体结构特征,可为晚疫病防控策略的制定以及抗病品种的合理布局提供指导。对2009年采自宁夏一个种植有93个品种(品系)的马铃薯种质资源圃的致病疫霉进行了交配型、致病型和线粒体DNA单倍型分析,结果表明,116个致病疫霉菌株中存在A1、A2和自育型3种交配型,发生频率分别为24.1%、57.8%和18.1%,A2交配型为优势类型;对其中43个菌株的致病型进行测试,检测到两种致病类型:1.2.3.4.5.6.7.8.9.10.11和3.4.10,发生频率分别为95.3%和4.7%,可克服所有11个抗病基因的1.2.3.4.5.6.7.8.9.10.11类型占绝对优势;对62个菌株的线粒体DNA单倍型进行分析,检测到Ia和IIa两种类型,发生频率分别为74.2%和25.8%。综合表型和基因型数据分析发现,该马铃薯种质资源圃中致病疫霉群体致病型单一,但致病型毒力因子高度复合;线粒体DNA分析表明,该马铃薯种质资源圃引入了遗传背景较为复杂的致病疫霉"新"群体。  相似文献   

14.
Genome‐modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre‐defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome‐scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.  相似文献   

15.
中国马铃薯晚疫病菌AFLP遗传多样性分析   总被引:2,自引:0,他引:2  
The genetic diversity of the populations of Phytophthora infestans from some major potato production regions in China were detected by amplified restriction fragment polymorphism (AFLP) analysis. Among 200 combinations of primer pair screened, 12 combinations could generate consistent polymorphic bands using six tested isolates. The twelve combinations were used to amplify the genomic DNA of 50 isolates collected in China from 1997 to 2002. A total of 922 AFLP bands were obtained, and 530 of them,covering 57.5%, showed polymorphism. Cluster analysis using the unweighted pair-group method with arithmetic averages (UPGMA) separated 50 isolates into five AFLP groups which were correlated to groups defined by geographical origin, however, they were not correlated to groups defined by mating type, or response to metalaxyl and virulence. Parameters of genetic diversity calculated by POPGENE software indicated that the genetic diversity level of Phytophtora infestans population in China was not high.  相似文献   

16.
中国马铃薯晚疫病菌AFLP遗传多样性分析   总被引:3,自引:0,他引:3  
应用AFLP分子标记检测了我国部分马铃薯主要产区马铃薯晚疫病菌的遗传多样性及不同地区菌株间的亲缘关系。在200对引物组合中,利用6个菌株筛选出12对多态性好、带型清晰的引物组合。利用这12对引物组合对1997-2002年间采自我国黑龙江、河北、四川和云南4省的50株菌株进行了PCR扩增,共扩增出922条谱带,其中多态性标记530条,占57.5%。利用NTSYSpc软件中UPGMA算法构建了我国马铃薯晚疫病菌的亲缘关系树状图,聚类分析结果表明我国马铃薯晚疫病菌的遗传多样性与病原菌的地理来源有一定的相关性,而与交配型、生理小种和对甲霜灵的抗性无明显的相关性。用POPGENE软件计算了各群体间的遗传多样性参数,结果表明我国马铃薯晚疫病菌的遗传多样性程度不高,不同地区种群间分化不明显。  相似文献   

17.
Eight isolates of Phytophthora infestans were recovered from late blight infected samples collected from the districts of Mbale and Mbarara in the Eastern and Western highlands of Uganda in 2001 and analysed using mitochondrial deoxyribonucleic acid (DNA) haplotype and Amplified Fragment Length Polymorphism (AFLP) markers. Polymerase chain reaction amplification with the P2 primer followed by digestion with MspI yielded a three‐fragment pattern characteristic of isolates belonging to the US‐1 clonal lineage; the polymorphism was confirmed by DNA sequencing. AFLP analysis yielded 60 markers, analysis of which clustered the Ugandan isolates with reference to US‐1 isolates (US930258 and US940501). These results suggest that the examined Ugandan isolates belong to the US‐1 clonage lineage.  相似文献   

18.
19.
Late blight, caused by Phytophthora infestans , is one of the most destructive diseases of tomato in Taiwan. A total of 655 isolates of P. infestans , including 29 isolates from potato, was collected from major tomato and potato production areas of Taiwan during 1991 to 2006. Isolates were characterized for their pathogenicity, mating type, in vitro metalaxyl sensitivity and molecular genotype (including allozyme pattern, mitochondrial genomic haplotype and DNA fingerprint) to monitor population changes in P. infestans . The population of P. infestans in Taiwan underwent a dramatic genetic shift in the 1997–1998 cool growing season. Isolates collected from tomato before 1997 were aggressive to tomato but not potato; most isolates obtained after 1998, were aggressive to both hosts. Metalaxyl sensitivity of isolates changed from sensitive/intermediate before 1997 to resistant since 1998. Similarly, the isolates obtained before 1997 were all US-1 clonal lineage (including variants US-1.1, US-1.2, US-1.3 and US-1.4). During the 1997–1998 cool growing season, the US-11 clonal lineage and the TW-1 genotype appeared, possibly introduced on imported table potatoes. The US-11 lineage spread rapidly and since 1999 has almost completely displaced the old population in Taiwan. Mating type determined by pairing with A1 and A2 reference isolages of P. parasitica , showed all isolates were of the A1 mating type, suggesting that the A2 mating type had not become established in Taiwan. The increasing percentage (up to 42.3% in 2006) of the US-11 variants (including US-11.l, US-11.2, US-11.3 and US-11.4) implied that genomic diversity of the pathogen is changing quickly. Therefore, it is important to continuously monitor the population changes of P. infestans and develop an integrated management strategy for this disease.  相似文献   

20.
Ebstrup T  Saalbach G  Egsgaard H 《Proteomics》2005,5(11):2839-2848
A proteomics study using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed on Phytophthora infestans. Proteins from cysts, germinated cysts and appressoria grown in vitro were isolated and separated by 2-DE. Statistical quantitative analysis of the protein spots from five independent experiments of each developmental stage revealed significant up-regulation of ten spots on gels from germinated cysts compared to cysts. Five spots were significantly up-regulated on gels from appressoria compared to germinated cysts and one of these up-regulated spots was not detectable on gels from cysts. In addition, one spot was significantly down-regulated and another spot not detectable on the gels from appressoria. The corresponding proteins to 13 of these spots were identified with high confidence using tandem mass spectrometry and database searches. The functions of the proteins that were up-regulated in germinated cysts and appressoria can be grouped into the following categories: protein synthesis (e.g. a DEAD box RNA helicase), amino acid metabolism, energy metabolism and reactive oxygen species scavenging. The spot not detected in appressoria was identified as the P. infestans crinkling- and necrosis-inducing protein CRN2. The identified proteins are most likely involved in the establishment of the infection of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号