首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lessons from snail tentacles   总被引:1,自引:0,他引:1  
Chase  Ronald 《Chemical senses》1986,11(4):411-426
The olfactory system of the snail is functionally capable andstructurally complex. The morphology of the olfactory epitheliumand the glomeruli are similar to analogous structures in vertebrates.However, the snail system differs markedly from the vertebratesystem in its lack of a mucus secretion and the apparent absenceof spatial patterning. Such similarities and differences teachus about the limitations and options governing the evolutionof olfactory systems. The comparative approach leads to thefollowing conclusions, or ‘lessons’: (1) Death andreplacement is normal for olfactory receptors. (2) Olfactionrequires large numbers of receptors and other neurons. (3) Glomerularstructures in the olfactory neuropil aid sensory processing.(4) Local interactions are important in the early stages ofolfactory processing. (5) The role of mucus in olfaction ispeculiar to the vertebrate nose. (6) The spatial patterningof odor responses is not necessary for effective odor processing.  相似文献   

3.
Phenotypic variation of lionfish supraocular tentacles   总被引:1,自引:0,他引:1  
A previous observation suggested that a novel phenotype of lionfish supraocular tentacle is evolving rapidly in the Red Sea and Indian Ocean. We confirm the existence of this phenotype in high prevalence in invasive populations of lionfish in the Western North Atlantic. Observations of individual lionfish from the Atlantic populations indicate that supraocular tentacles are more prevalent on juvenile and young adult lionfish suggesting this characteristic is size specific and is not associated with a genetic lineage. The high prevalence of this novel phenotype in the Atlantic may be a founder effect rather than continued selection. Genetic analysis further supports this conclusion as this phenotype is present in two Pterois species found in the Atlantic.  相似文献   

4.
The erythrocruorin from the snail Planorbis corneus had a sedimentation coefficient, so/20,w, of 33.5 +/- 0.31 S, and a molecular weight of 1.65 x 10(6) +/- 0.04 x 10(6) by high-speed sedimentation-equilibrium ultracentrifugation. The amino acid composition and absorption spectrum of the protein are reported. A very low number of half-cystine residues was found, corresponding to 0.4 residue per haem group. The haem content was 2.76 +/- 0.22%, corresponding to a protein molecular weight of about 22300. Under both acid and alkaline conditions partial dissociation took place to yield mixtures of products that could not be identified. A subunit corresponding to that containing one haem group was not obtained under any of the dossociating conditions tried. Electron microscopy revealed a ring-shaped molecule about 12.2 +/- 0.5 nm in diameter. The native erythrocruorin bound O2 co-operatively, the intermediate value of h in Hill plots having values between 1.7 and 3.4 depending on the conditions.  相似文献   

5.
TEM observations of catch tentacles revealed that the tentacle tip epidermis is filled with two size classes of mature holotrich nematocysts and a gland cell filled with electron-dense vesicles. Vesicle production is restricted to upper-middle and tentacle tip regions, whereas holotrich development occurs in the lower-middle and tentacle base regions. Thus, catch tentacles have a maturity gradient along their length, with mature tissues concentrated at the tentacle tip. Occasional feeding tentacle cnidae (microbasic p-mastigophores and basitrichs) and mucus gland cells occur in proximal portions of catch tentacles, but are phagocytized by amoeboid granulocytes and transported to the gastrodermis for further degradation. No feeding tentacle cnidae or mucus cells occur distally in catch tentacles. Unlike catch tentacles, feeding tentacles are homogeneous in structure along their length with enidocytes containing mature spirocysts, microbasic p-mastigophore or basitrich nematocysts distributed along the epithelial surface. Cnidoblasts are recessed beneath cnidocytes, occurring along the nerve plexus. Mucus gland cells and gland cells filled with electron-dense vesicles are present in feeding tentacles, distributed at the epithelial surface. Granular phagocytes are rare in the feeding tentacle tip, but common in the tentacle base.  相似文献   

6.
小麦黄化突变体叶绿体超微结构研究   总被引:4,自引:0,他引:4  
利用透射电镜对小麦自然黄化突变体及其突变亲本(西农1718)叶片细胞叶绿体的数目、形态及超微结构进行比较分析。结果发现:(1)3种不同黄化程度突变体的叶绿体分布、数目、形状及大小与突变亲本无明显差异;(2)突变体叶绿素含量为野生型58%的黄绿植株与其突变亲本叶绿体超微结构无明显差异,基质类囊体与基粒类囊体高度分化,基粒数目以及基粒片层数目较多;(3)突变体金黄和绿黄植株的叶绿素含量分别为野生型的17%、24%,其叶绿体超微结构与突变亲本明显不同,突变体的叶绿体发育存在明显缺陷,其中突变体金黄植株的叶绿体内无基粒、基质片层清晰可见,有淀粉粒,嗜锇颗粒较多,而突变体绿黄植株的叶绿体内有基粒,但明显少于突变亲本,且基粒片层较少,基质类囊体较发达。结果表明该黄化突变体叶绿体超微结构的改变,是由于叶绿素含量降低造成,推测,该黄化突变是由于叶绿素合成受阻导致的。  相似文献   

7.
环境胁迫对库拉索芦荟叶片超微结构影响研究   总被引:2,自引:0,他引:2  
对1年生库拉索芦荟分别用盐(1.8%的NaCl)、低温(10℃)、干旱[25%(w/v)的聚乙二醇-6000]3种胁迫条件处理7d后,对其叶肉细胞超微结构进行观察.结果发现:3种胁迫处理均可使库拉索芦荟细胞膜系统、叶绿体、线粒体、细胞核等结构受到不同程度的破坏,叶绿体周围出现许多小泡,导致细胞内膜系统紊乱,细胞器结构稳定性降低;盐胁迫下高尔基体在细胞质中解体;盐和低温胁迫下均可见线粒体膜与叶绿体膜发生融合、线粒体嵌在叶绿体当中的现象.另外,本研究发现,盐胁迫、低温胁迫比干旱胁迫对库拉索芦荟细胞膜的损伤更严重,而水分胁迫对其的伤害程度较小,表明库拉索芦荟的抗旱性较其抗盐性更强.  相似文献   

8.
9.
Summary Action potentials of Drosera tentacles resemble those of vertebrate peripheral nerves in that they appear to be comprised of relatively uniform spikes, variable shoulders or negative after-potentials, and variable positive after-potentials. The peaking of the spike corresponds to a period of great refractoriness, while action potentials of low amplitude may be fired readily during the negative after-potential. The action potentials fired during the negative after-potential appear to be unlike those of peripheral nerves in that they are of abnormally brief duration. Also apparently different from the case in peripheral nerves is the dependence of the duration of an action potential on the interval separating it from the preceding action potential.Action potentials propagate from the neck of the stalk to its base at about 5 mm s-1 at room temperature. Propagation may be reversed artificially, consistent with the possibility that the neuroid cells are electrically coupled.  相似文献   

10.
11.
Defects in the function of cellular organelles such as peroxisomes, lysosomes and mitochondria are well-known causes of human diseases. Recently, another organelle has also been added to this list. Cilia--tiny hair-like organelles attached to the cell surface--are located on almost all polarized cell types of the human body and have been adapted as versatile tools for various cellular functions, explaining why cilia-related disorders can affect many organ systems. Several molecular mechanisms involved in cilia-related disorders have been identified that affect the structure and function of distinct cilia types.  相似文献   

12.
Tentacles are remarkable anatomical structures in invertebrates for their diversity of form and function. In bivalves, tentacular organs are commonly associated with protective, secretory, and sensory roles. However, anatomical details are available for only a few species, rendering the diversity and evolution of bivalve tentacles still obscure. In Pteriomorphia, a clade including oysters, scallops, pearl oysters, and relatives, tentacles are abundant and diverse. We investigated tentacle anatomy in the group to understand variation, infer functions, and investigate patterns in tentacle diversity. Six species from four pteriomorphian families (Ostreidae, Pinnidae, Pteriidae, and Spondylidae) were collected and thoroughly investigated with integrative microscopy techniques, including histology, scanning electron microscopy, and confocal microscopy. Tentacles can be classified as middle fold tentacles (MFT) and inner fold tentacles (IFT) according to their position with respect to the folds of the mantle margin. While MFT morphology indicates intense secretion of mucosubstances, no evidence for secretory activity was found for IFT. However, both tentacle types have appropriate ciliary distribution and length to promote mucus transportation for cleaning and lubrication. Protective and sensory functions are discussed based on different lines of evidence, including secretion, cilia distribution, musculature, and innervation. Our results support the homology of MFT and IFT only for Pterioidea and Ostreoidea, considering their morphology, the presence of ciliated receptors at the tips, and branched innervation pattern. This is in accordance with recent phylogenetic hypotheses that support the close relationship between these superfamilies. In contrast, major structural differences indicate that MFT and IFT are probably not homologous across all pteriomorphians. By applying integrative microscopy, we were able to reveal anatomical elements that are essential for the understanding of homology and function when dealing with such superficially similar structures.  相似文献   

13.
14.
15.
16.
17.
18.
Summary The cnidoblast of hydra is known to be both a receptor and an effector cell. This paper describes a specialized cell complex in the tentacles of hydra in which the cnidoblast is shown to have a peculiar relationship to the musculoepithelial cell of the ectoderm. The musculoepithelial cell, which is shown for the first time to have myofilaments of two dimensions, also has a highly specialized area of attenuated cytoplasm, the plasmalemma of which makes a peculiar contact with numerous cnidoblasts on one side and with the acellular mesogloea on the other. It is proposed that the musculoepithelial cell serves an integrative function for the activation of its associated cnidoblasts and perhaps for those of other batteries. Intimately associated with this cell complex are numerous neuronal processes and neurosecretory fibers. The receptor element of the cnidoblast, the cnidocil, is described in detail and shown to bear a striking resemblance to the specialized apical surfaces of hair cells in the lateral line organ, organ of Corti and semicircular canals of vertebrates. Speculations as to the mode of action of the various elements of this complex are offered.This investigation was supported by Public Health Service Grant GM-06934, from the National Institute of General Medical Sciences.The author is indebted to Miss Millicent Wedekind for expert technical assistance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号