共查询到20条相似文献,搜索用时 62 毫秒
1.
利用节点效率评估复杂网络功能鲁棒性 总被引:6,自引:0,他引:6
为了克服现有复杂网络鲁棒性研究模型只考虑节点失效的局部影响性和网络拓扑鲁棒性的缺陷, 提出了一种利用节点效率来评估复杂网络功能鲁棒性的方法. 该方法综合考虑节点失效的全局影响性, 利用网络中节点的效率来定义各节点的负载、极限负载和失效模型, 通过打击后网络中最终失效节点的比例来衡量网络的功能鲁棒性, 并给出了其评估优化算法. 实验分析表明该方法对考虑节点负载的复杂网络功能鲁棒性的评定可行有效, 对于大型复杂网络可以获得理想的计算能力. 相似文献
2.
复杂网络中节点重要性排序的研究进展 总被引:13,自引:0,他引:13
如何用定量分析的方法识别超大规模网络中哪些节点最重要, 或者评价某个节点相对于其他一个或多个节点的重要程度, 这是复杂网络研究中亟待解决的重要问题之一. 本文分别从网络结构和传播动力学的角度, 对现有的复杂网络中节点重要性排序方法进行了系统的回顾,总结了节点重要性排序方法的最新研究进展, 并对不同的节点重要性排序指标的优缺点以及适用环境进行了分析, 最后指出了这一领域中几个有待解决的问题及可能的发展方向.关键词:复杂网络节点重要性网络结构传播动力学 相似文献
3.
4.
针对具有随机节点结构的复杂网络, 研究其同步问题. 基于Lyapunov稳定性理论和线性矩阵不等式技术给出了复杂网络同步稳定的充分性条件, 该充分性条件不仅与复杂网络的状态时延有关, 还与节点结构的概率分布有关. 数值仿真表明本文方法的有效性.关键词:复杂网络随机节点同步稳定时滞 相似文献
5.
6.
面向结构洞的复杂网络关键节点排序 总被引:2,自引:0,他引:2
复杂网络中的结构洞节点对于信息传播具有重要作用, 现有关键节点排序方法多数没有兼顾结构洞节点和其他类型的关键节点进行排序. 本文根据结构洞理论与关键节点排序相关研究选取了网络约束系数、介数中心性、等级度、效率、网络规模、PageRank值以及聚类系数7个度量指标, 将基于ListNet的排序学习方法引入到复杂网络的关键节点排序问题中, 融合7个度量指标, 构建了一个能够综合评价面向结构洞节点的关键节点排序方法. 采用模拟网络和实际复杂网络进行了大量实验, 人工标准试验结果表明本文排序方法能够综合考虑结构洞节点和核心节点, 关键节点排序与人工排序结果具有较高的一致性. SIR传播模型评估实验结果表明由本文选择TOP-K节点发起的传播能够在较短的传播时间内达到最大的传播范围. 相似文献
7.
基于多属性决策的复杂网络节点重要性综合评价方法 总被引:7,自引:0,他引:7
复杂网络中的节点重要性评价在实际应用中有着重要意义.现有的一些重要性评价指标如度、介数等存在适用范围有限,评价结果不够全面等缺点,因为节点在复杂网络中的重要性不仅仅受单一因素的影响.为此,本文提出了一种基于多属性决策的复杂网络节点重要性综合评价方法.该方法将复杂网络中的每一个节点看作一个方案,其多个重要性评价指标作为该方案的属性,通过计算每个方案到理想方案的接近程度,最终得到该节点的重要性综合评价结果.该方法不仅可以用于不同类型复杂网络的节点重要性评价,而且便于扩展,实验结果表明了该方法的有效性. 相似文献
8.
9.
10.
针对实际网络中节点存在抗攻击差异以及边的非均匀传输等情况,基于平均场理论,提出具有抗攻击差异和非均匀传输特性的网络病毒传播平均场SIR模型.该模型中,通过引入脆弱性函数和传输函数,分别描述节点的抗攻击差异以及边的非均匀传输能力.通过对所提模型的分析,得到传播阈值的理论结果.理论分析和仿真表明,节点的抗攻击差异以及边的非均匀传输,都可导致出现正的传播阈值,使得病毒传播风险有效降低. 相似文献
11.
Complex networks are widely applied in every aspect of human society, and community detection is a research hotspot in complex networks. Many algorithms use modularity as the objective function, which can simplify the algorithm. In this paper, a community detection method based on modularity and an improved genetic algorithm (MIGA) is put forward. MIGA takes the modularity Q as the objective function, which can simplify the algorithm, and uses prior information (the number of community structures), which makes the algorithm more targeted and improves the stability and accuracy of community detection. Meanwhile, MIGA takes the simulated annealing method as the local search method, which can improve the ability of local search by adjusting the parameters. Compared with the state-of-art algorithms, simulation results on computer-generated and four real-world networks reflect the effectiveness of MIGA. 相似文献
12.
13.
Community structure is an important property of complex networks. Most optimization-based community detection algorithms employ single optimization criteria. In this study, the community detection is solved as a multiobjective optimization problem by using the multiobjective evolutionary algorithm based on decomposition. The proposed algorithm maximizes the density of internal degrees, and minimizes the density of external degrees simultaneously. It can produce a set of solutions which can represent various divisions to the networks at different hierarchical levels. The number of communities is automatically determined by the non-dominated individuals resulting from our algorithm. Experiments on both synthetic and real-world network datasets verify that our algorithm is highly efficient at discovering quality community structure. 相似文献
14.
The Internet is an inseparable part of our contemporary lives. This means that protection against threats and attacks is crucial for major companies and for individual users. There is a demand for the ongoing development of methods for ensuring security in cyberspace. A crucial cybersecurity solution is intrusion detection systems, which detect attacks in network environments and responds appropriately. This article presents a new multivariable heuristic intrusion detection algorithm based on different types of flags and values of entropy. The data is shared by organisations to help increase the effectiveness of intrusion detection. The authors also propose default values for parameters of a heuristic algorithm and values regarding detection thresholds. This solution has been implemented in a well-known, open-source system and verified with a series of tests. Additionally, the authors investigated how updating the variables affects the intrusion detection process. The results confirmed the effectiveness of the proposed approach and heuristic algorithm. 相似文献
15.
Syntax of natural language has been the focus of linguistics for decades. The complex network theory, being one of new research tools, opens new perspectives on syntax properties of the language. Despite numerous partial achievements, some fundamental problems remain unsolved. Specifically, although statistical properties typical for complex networks can be observed in all syntactic networks, the impact of syntax itself on these properties is still unclear. The aim of the present study is to shed more light on the role of syntax in the syntactic network structure. In particular, we concentrate on the impact of the syntactic function of a verb in the sentence on the complex network structure. Verbs play the decisive role in the sentence structure (“local” importance). From this fact we hypothesize the importance of verbs in the complex network (“global” importance). The importance of verb in the complex network is assessed by the number of links which are directed from the node representing verb to other nodes in the network. Six languages (Catalan, Czech, Dutch, Hungarian, Italian, Portuguese) were used for testing the hypothesis. 相似文献
16.
Detecting local communities in real-world graphs such as large social networks, web graphs, and biological networks has received a great deal of attention because obtaining complete information from a large network is still difficult and unrealistic nowadays. In this paper, we define the term local degree central node whose degree is greater than or equal to the degree of its neighbor nodes. A new method based on the local degree central node to detect the local community is proposed. In our method, the local community is not discovered from the given starting node, but from the local degree central node that is associated with the given starting node. Experiments show that the local central nodes are key nodes of communities in complex networks and the local communities detected by our method have high accuracy. Our algorithm can discover local communities accurately for more nodes and is an effective method to explore community structures of large networks. 相似文献
17.
Identifying the most influential nodes in complex networks provides a strong basis for understanding spreading dynamics and ensuring more efficient spread of information. Due to the heterogeneous degree distribution, we observe that current centrality measures are correlated in their results of nodes ranking. This paper introduces the concept of all-around nodes, which act like all-around players with good performance in combined metrics. Then, an all-around distance is presented for quantifying the influence of nodes. The experimental results of susceptible-infectious-recovered (SIR) dynamics suggest that the proposed all-around distance can act as a more accurate, stable indicator of influential nodes. 相似文献
18.
The study of properties of speech sound systems is of great significance in understanding the human cognitive mechanism and the working principles of speech sound systems. Some properties of speech sound systems, such as the listener-oriented feature and the talker-oriented feature, have been unveiled with the statistical study of phonemes in human languages and the research of the interrelations between human articulatory gestures and the corresponding acoustic parameters. With all the phonemes of speech sound systems treated as a coherent whole, our research, which focuses on the dynamic properties of speech sound systems in operation, investigates some statistical parameters of Chinese phoneme networks based on real text and dictionaries. The findings are as follows: phonemic networks have high connectivity degrees and short average distances; the degrees obey normal distribution and the weighted degrees obey power law distribution; vowels enjoy higher priority than consonants in the actual operation of speech sound systems; the phonemic networks have high robustness against targeted attacks and random errors. In addition, for investigating the structural properties of a speech sound system, a statistical study of dictionaries is conducted, which shows the higher frequency of shorter words and syllables and the tendency that the longer a word is, the shorter the syllables composing it are. From these structural properties and dynamic properties one can derive the following conclusion: the static structure of a speech sound system tends to promote communication efficiency and save articulation effort while the dynamic operation of this system gives preference to reliable transmission and easy recognition. In short, a speech sound system is an effective, efficient and reliable communication system optimized in many aspects. 相似文献
19.
Evolution of Chinese airport network 总被引:2,自引:0,他引:2
With the rapid development of the economy and the accelerated globalization process, the aviation industry plays a more and more critical role in today’s world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of the Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN has remained steady during the past few years, there are many dynamic switchings inside the network, which have changed the relative importance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic continues to grow in an exponential form and has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities. 相似文献
20.
A discussion network is an important kind of social network, and it has been researched by many scholars in recent years. In this paper, we mainly studied its structural evolution based on an empirical study of a famous online discussion that happened in China in 2008. We found that the scale growth of the network shows an S shape, the degree distribution represents the power law in the first halfway, and the network shows a degree of disassortativity characteristic. We also classified the most active participants into different groups by their opinions and studied the structural evolution of opposite groups. It was observed that the evolution of nodes in each group were very similar, but the evolution of densities were obviously different. Specifically, we found that the most active participants preferred to converse with those belonging to the opposite groups at the beginning and tended to converse with anybody regardless of group as the discussion network grew. In the paper, these evolution patterns are revealed, and future lines of research are also considered. 相似文献