首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
林清春 《数学学报》2018,61(6):951-962
设μ=(μ_i)_i≥0为Z_+上的测度且p 1,考虑下述离散型p次Dirichlet型D_p(f)=Σ_(i=0)~∞μ_ib_i(f_i-f_(i+1))(f_i~(p-1)-f_(i+1)~(p-1)),f≥0,其中(b_i)_(i≥0)为Z_+上的正序列.本文旨在给出空间L~p(μ)上p次Dirichlet型D_p(f)所对应的第一特征值λ_(0,p)=inf{D_p(f):‖f‖_p=1,f非负且具有紧支撑}的上下界精细估计.  相似文献   

2.
边界层的奇性分析   总被引:2,自引:0,他引:2  
设 λ∈[λ_0,∞)(0<λ_0<<1),H_1=H_0~2(Ω)∩H~3(Ω),H_2=H_0~1(Ω)∩H~3(Ω),H_3=H~3(Ω),k_1=1/4,k_2=1/12,k_3=1/36,J_6(λ)=integral d(x,Γ)≥a~λlog(1+a~(-β) |△▽(u_e-u)|~2dx,α(ε)=1/6×log_ε1/C(C>1).我们考虑问题(?)定理.若 u=f∈H_i,对问题(1),有如下三种情形成立:i)正规区域 当 λ_0≤λ≤1/6-α(ε)时,有J_6(λ)≤C‖f‖_(H~3(Ω))~2;ii)奇性增长区域当1/6-α(ε)<λ<1/6+k_i/6时,有J_6(λ)≤Cε~(-6λ+2k_i)‖f‖_(H~3(Ω))~2;iii)奇性稳定区域当 λ≥1/6+(k_i)/6时,有J_6(λ)≤Cε~(-1+k_i)‖f‖_(H~3(Ω))~2;其中 i=1,2,3,β≥(45)/(32),C 为同 ε 无关的常数(见图1).  相似文献   

3.
我们讨论一般线性模型:Y=Xβ e,E(e)=0,Cov(e)=σ~2V,V为非负定协方差矩阵。我们知道μ=Xβ的最小二乘估计和最佳线性无偏估计分别为μ~*=X(X′X)~-X′Y和■=X(X′T~-X)~-X′X~-Y,这里T=V XUX′,U是一个对称阵使得R(T)=R(V■X)以及T≥0。本文讨论V≥0时,■与μ~*之差的范数界,把V>0时■和μ~*之差在Haberman条件下的范数界推广到V≥0,且在取常用的欧氏范数时,得到使Haberman条件成立的便于应用的充要条件。本文还证明了[2]界的推广形式,并把[3]界推广到V≥0的情况。  相似文献   

4.
本文证明,在条件a(s)>0(s>0),a(0)=0,b(s)=0(a(s)~λ)(s≥0,0≤λ≤1、2),s~μ=0(a(s))(a>0,μ>0)之下,混合问题 μ_t=(a(u)u_x)_x+b(u)u_x, (x, t)∈R={(x, t)|-11时,解为唯一的,这改善了[1,2]的结果。  相似文献   

5.
设有回归模型Y_i=μ_i+e_i,i=1,2,…,n (1)假定 e_1,…,e_n 为 iid.的正态随机变量序列,具有共同的均值0和方差σ~2.每个 Y_i 可通过设计点列 x_(i1),x_(i2),…,x_i_p_n 观察到.为估计 Y=(Y_1,…,Y_n)′的未知均值 μ=(μ_1,…,μ_n)′,可构造一族岭估计(?)(h)=X(X′X+hI)~-1X′Y,h≥0,(2)其中 X=(x_ij)_(n×ρn) 为设计阵,I 为 p_n 阶单位阵.在这里,岭参数 h 的选择是一个十分  相似文献   

6.
设有线性模型:Y=(Y_1,…,Y_n)'=Xβ+ε=Xβ+(ε_1,…,ε_n)',其中X:n×p已知,β=(β_1,…,β_p)'未知,ε_1,…,ε_n独立,E_(ε_i)=E_(ε_i~3)=0,E_(ε_4~2)=σ~2,F_(ε_i~4)=3σ~4,i=1,2,…,n,0<σ~2<∞,σ~2未知。在矩阵损失下,我们考虑(Sβ,σ~2)的联合估计(AY,Y'BY)在估计类×={(CY,Y'DY):C为m×n的常数阵,D≥0为n×n的常数阵中的可容许性,得到了(AY,Y'BY)为(Sβ,σ~2)的可容许估计的一些充分条件和必要条件。  相似文献   

7.
本文讨论了多元线性模型中的一个假设检验问题。假定 的各行独立、正态、同协差阵Ⅴ。现在要检验假设H_0:存在矩阵C使θ=Cη是否成立。首先可将问题化为法式的形式,对法式分两种情况进行讨论: (一)V=σ~2I, σ~2未知。此时可求出θ, C,σ~2的最大似然估计(当H_0成立时)是中的资料阵y_1,y_2,d1,…,d_K是y′_3y_3的全部特征根。λ_1~*≥…λ_(p+q)~*是(y_1 y_2)(y′_1 y′_2)的全部 Λ=sum from j=p+1 to k /sum from j-1 to k d_j,λ_1≥λ_2…≥λ_k是y′_1y1+y′_2y_2的全部特征根。 (二)一般情形V未知。此时θ,C的估计量同前,可求出 (?)=1/n(y′_2T_(22)T′_(22)y_2+y′_3y_3).H_0相应的Lawley不变检验是 sum from j=p+1 to k β_j≥α_1,其中β_1≥β_2≥…≥β_k是y′1y_1+y′_2y_2的相对于y′_3y_3的全部特征根。 有关Λ的以及sum from j=p+1 to k β_j的极限分布将在另外的文章中讨论。  相似文献   

8.
假定w=(w_1,w_2,…,w_n,…)∈c_0-l_1,且1=w_1≥w_2≥…≥0. 记π是所有关于自然数排列的集合。若σ∈π,对数列β=(b_i)令‖β‖_(σ,p)=sum from i=1 to ∞(|b_((σ i))|~pw_i)。 由此我们有  相似文献   

9.
<正> 1.证明:当r=0时,结论显然成立。假定r>0,记λ_1≥λ_2≥…≥λ_n为A的特征根,则A~2的特征根为λ_2~2≥…≥λ_n~2。因A的秩为r,故λ_1≥…≥λ_r>0,λ_(r+1)=…=λ_1=0。考虑S=sub from i=1 to r(λ_i一λ)~1,  相似文献   

10.
Theorem 1 If 1≤p≤∞, f∈W_p~(l)(D), then ω_k(δ,f,W_p~(l)(D))≤c(‖f‖_(l)_p),if f∈C~〔k+l〕(D), then ω_k(δ, f,W_p~(l)(D))≤c(δ~kmax‖(D)~(k)f‖_(()p)), where c is independent of δ≥0 and f. Theorem 2 If f∈W_p~(r)H_M~(a)(〔a,b〕)is of period b-a<∞, then ‖f‖_((s)t)≤cM~d‖f‖_((u)υ)~e, where d=δ/θ, e=(θ-δ)/θ, p≥1, t≥υ≥1, r>s≥u, δ=s-u+  相似文献   

11.
本文在椭球等高分布假定下,讨论了二次型X′AX(A为对称阵)的非中心Cochran定理。主要结果如下: 若X~EC_n(μ,L_n;g),g(x)>0为x的连续函数,且X有有限的2n阶矩。A_i,i=1,2,…,m为n×n对称阵。A=∑A_i,λ_1,…,λ_k互不相同且非零。考虑下面的条件: (a) X′A_iX■sum from j=1 to k λ_jy_(ij),(y_(i1),…(y_(ik))′~Gχ~2(n_(i1),…,n_(ik);δ_(i1)~2,…,δ_(ik)~2;g)j=1,…,m。 (b) (X′A_1X,…,X′A_mX)■(sum from j=1 to k λ_jz_j…,sum from j=(m-1)k 1 to mk λ_(j-(m-1)k)z_j)(z_1…,z_(mk))′~Gχ~2(n_(11),n_(1k),n_(21)…,n_(mk);δ_(11)~2,…δ_(1k)~2,δ_(21)~2,…,δ_(mk)~2;g) (c) X′AX(?)sum from j=1 to k λ_jy_j,(y_1,…,y_k)′~Gχ(n_1,…,n_k;δ_1~2,…,δ_k~2;g) (d) r(A)=∑r(A_i)=∑∑r(A_iE_j),A=∑λ_jE_j,E_j~2=E_j,E_jE_(j′)=0,j≠j′=1,…,k, (e) k个等式n_j=∑n_(ij)中至少有k-1个成立。则 (Ⅰ) (a),(b)■(c),(d),(e), (Ⅱ) (a),(c),(e)■(b),(d), (Ⅲ) (b),(c)■(a),(d),(c), (Ⅳ) (c),(d)■(a),(b),(c)。  相似文献   

12.
两个方差分量同时估计的可容许性   总被引:1,自引:0,他引:1  
考虑方差分量模型 EY=X·β DY=σ_1~2V_1+_2~2V_2,其中β∈R~p,σ_1~2>0,σ_2~2>0均未知;X,V_1>0,V_2>0均已知;r(X)=p。我们要同时估计(σ_1~2,σ_2~2),并考虑估计类={d(A_1,A_2)=(Y′A_1Y,Y′A_2Y),A_1≥0,A_2≥0}。损失函数为: L(d(A_1,A_2),(σ_1~2,σ_2~2=1/σ_1~4(Y′A_1Y-σ_1~2)~2+1/σ_2~4(Y′A_2Y-σ_2~2)~2。本文给出了在V_1=V_2限制下,d(A_1,A_2)为容许估计的充分条件和必要条件,以及没有这个限制时d(A_1,A_2)为容许估计的充分条件。  相似文献   

13.
考虑线性模型(?)其中 X 为已知 n×p 矩阵,V 是已知或未知的 n 阶非负定阵,β=(β_1,…,β_p)′∈R~p 是参向量.记具有结构(1.1)的模型为 L=(Y,Xβ,V).设有两个模型 L_1(Y_1,X_1β,V_1),L_2=(Y_2,X_2β,V_2),当 V_1,V_2已知,Ehrenfeld定义了 L_1优于 L_2的概念,并证明了当 V_1,V_2非奇异时,L_1优于 L_2当且仅当 X′_1V_1~(-1)X_1-X′_2V_2~(-1)X_2≥0(非负定);Stepniak,Wang and Wu 继续研究了 V_1,V_2奇异的情形;Stepniak and Torgersen 又定义了当 V_1,V_2具有形式 σ~2V(σ~2未知,V 已知)时,L_1优于 L_2的概念;而且 Stepniak 证明了 L_1优于 L_2当且仅当 X′_1(V_1+X_1X′_1)-X_1-X′_2(V_2+X_2X′_2)-X_2≥0.但是,我们知道,在许多统计问题中,可观察的随机向量 Y 的协方差阵 V却有这样的形式 V=∑θ_iV_i,这里θ_i 为未知参数.事实上,在求方差分量的估计时,由均值-方差对应法导出的新模型其新的协方差阵往往不具有 σ~2V 这么简洁的形式(参见[5]).本文考虑的模型是 L_i=(Y_i,X_i,σ_1~2U_i+σ_2~2V_i),这里 U_i,V_i 均为已知非负定阵;σ_1~2,σ_2~2为未知参数.我们将给出 L_1优于 L_2(记为 L_1(?)L_2)的定义及判定准则。  相似文献   

14.
本文给出两类行列式之比|X′B~(-1)AB~(-1)X||X′A~(-1)X|/|X′B~(-1)X|~2和|X′B~(-1)AB~(-1)Y||Y′A~(-1)X|/|X′B~(-1)X||Y′B~(-1)Y|的上界,其中 A 和 B 是 n×n 阶正定矩阵,X 和 Y 是任意的秩为 k 的 n×k 阶矩阵。并讨论其在线性模型参数估计理论中的应用。本文的结果是 Khatri 和 Rao1981年结果的推广。设 A 是 n 阶正定矩阵,其特征根为λ_1≥λ_2≥…≥λ_n>0,对任意非零的 n×1向量 x,不等式((x′Ax)(x′A(-1)x))/((x′x)~2)≤((λ_1 λ_n)~2)/(4λ_1λ_n) (1)称为 Kantorovich 不等式。此不等式已有一系列的推广,在[1—4]中都对不等式(1)以不  相似文献   

15.
令A>0及B>0记两个n×n(n≥2)厄尔米特正定矩阵;μ_1≥μ_2≥…μ_n及ν_1≥ν_2≥…≥ν_n记A和B的特征值;设λ为AB的任意特征值.ShaHu-yun证得2/nμ_n~2ν_n~2/μ_n~2 ν_n~2<λ相似文献   

16.
Let (X,θ),(X_1,θ_1),…,(X_n,θ_n) be R~d×R~1-valued random vectors, it is desired to predict the value of θ, based on the observed value of X and with the help of the training sample Z~n={(X_i,θ_i), i=1,…,n}. Cover(1) used the k-Nearest Neighbor method to this problem, the method is as follows: Introduce a metric ‖X-Y‖ in R_d. Rearrange X_1,…,X_n into X_(n1),…, X_(nn), such that ‖X_(n1)-X‖≤ ‖X_(n2)-X‖≤…≤‖X_(nn)-X‖,and break ties by comparing indices. Choose positive integer k. Denote by θ_(ni) the θ-value associated with X_(ni), i. e., θ_(ni) =θ_j when X_(ni)=X_j. Under the square loss L(θ,α)=  相似文献   

17.
再论线性模型中误差方差的二次型估计的可容许性   总被引:24,自引:0,他引:24  
设有线性模型Y=(y_1,…,y_n)′=Xβ ε=X(β_1,…,β_p)′ (ε_1,…,ε_n)′,(1.1)这里 X 为已知的,n×p 矩阵,n≥p,ε_1,…,ε_n 相互独立,E(ε_i)=0,E(ε_i~2)=σ~2,E(ε_i~3)=0,E(ε_i~4)=3σ~4,i=1,…,n.β∈R~p,0<σ~2<∞均为未知参数.欲估计σ~2,  相似文献   

18.
孙保炬 《数学进展》2007,36(1):39-46
本文的目的是建立新的具有最佳常数因子的Hardy-Hilbert不等式的推广式.对二重级数适当配方,利用Hlder不等式及β-函数,得到下面的推广式:∑_(m=1)~∞∑_(n=1)~∞((a_nb_n)/(m~c n~c)■)<cλ,p(∑n~((P-1)(1-λ))a_n~p)~(1/p)(∑n~((q-1)(1-λ))b_n~q)~(1/q),这里λ>0,c>0,p>1,(1/p) (1/q)=1,a_n≥0,b_n≥0,cλ,p=(1/c)B((λ/cp),(λ/cq)),通过选取两个特殊序列,证明了常数因子cλ,p是最佳的;还给出了它的等价形式,用类似方法给出了重积分形式的Hardy-Hilbert不等式的推广式及其等价形式.  相似文献   

19.
本文中讨论二元序列时,其元素间的运算均在二元域 F_2={0,1}中进行.设α=(α_t)_t≥0是 F_2上由多项式 c(x)=1+c_1x+…+c_(d-1)x~(d-1)+x~d 生成的线性序列,即有α_t+c_1α_(t+1)+…+C_(d-1)α_(t+d-1)+a_(t+d)=0,t≥0.(1)如果有二元干扰序列 e=(e_t)_(t≥0)迭加于α,其中 e_0,e_1,…是独立同分布的,Prob(e_t=1)=s<1/2,则迭合序列 b=(b_t)_(t≥0)=(α_t+e_t)t≥0称为α的含错序列,其错误率为 s.从已知的含  相似文献   

20.
关于非线性机床再生颤振的周期的存在性   总被引:2,自引:0,他引:2  
李继彬在文献[1]研究了机床再生颤振的模型m(x|¨)+h/ω(?)+λ(x+β_1x~2+β_2x~3)=-K_1[Δ_s+c_1(Δ_s)~2+c_2(Δ_s)~3],(1)其中 Δ_s=(?)(t)-x(t-T),T 是常数,式中出现的系数都是常数.文献[1]在 T 很小的假设下,近似地把Δ_s看成是 (?)(t)T,于是把(1)化成了普通的常微分方程而不是原来的微分差分方程——泛函微分方程的一种特殊形式.然后在常微  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号