首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
3.
This paper proposes a zero‐voltage switching (ZVS) LLC resonant step up DC–DC converter with series‐connected primary windings of the transformer. The series resonant inverter in the proposed topology has two power switches (MOSFETs), two resonant capacitors, two resonant inductors, and only one transformer with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. Resonant capacitors and inductors along with the primary windings of the transformer form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with an interleaved half switching cycle. The secondary winding of transformer is connected to a bridge rectifier circuit to rectify the output voltage. The converter operates within a narrow frequency range below the resonance frequency to achieve ZVS, and its output power is regulated by pulse frequency modulation. The converter has lower conduction and switching losses and therefore higher efficiency. The experimental results of a 500‐W prototype of proposed converter are presented. The results confirm the good operation and performance of the converter. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

4.
In recent years, the soft‐switching techniques have attracted attention for their peculiar advantages such as low switching loss, high power density, EMI/RFI noise reduction, and so on. The authors have previously reported on a quasi‐resonant dc–dc converter using new phase‐shift PWM control scheme. By using the proposed control scheme, circulating current is eliminated and ZVS (Zero Voltage Switching) is achieved with small commutating current. As a result, the conduction losses caused by their currents are substantially reduced. In this paper, the authors apply a proposed control scheme to a quasi‐resonant high‐frequency transformer link dc–ac converter. As a result, all switching devises in this dc–ac converter can achieve soft switching with small commutating current irrespective of inverter mode and rectifier mode. Its operating principle and unique features are described as compared with the symmetrical control scheme of dc–ac converter. Operating performance of this dc–ac converter in the steady state is illustrated by means of simulation results. © 1999 Scripta Technica, Electr Eng Jpn, 130(2): 88–98, 2000  相似文献   

5.
A five‐element multiplex resonant (LLCLC) full‐bridge DC‐DC converter controlled by pulse frequency modulation (PFM) is proposed in this paper. The high frequency (HF)‐link resonant DC‐DC converter proposed herein can perform wide‐range output power and voltage regulation with a narrow frequency range due to an antiresonant tank that works effectively as a wide‐range variable inductor. The advantageous characteristics of the antiresonant tank provide overcurrent protection in the case of the short‐circuited load condition as well as in the startup interval. Thus, the technical challenges of a conventional LLC DC‐DC converter can be overcome, and the reliability of the relevant switch‐mode power supplies can be improved. The operating principle of the LLCLC DC‐DC converter is described, after which its performance is evaluated in an experimental setup based on the 2.5 kW prototype. Finally, the feasibility of the proposed DC‐DC converter is discussed from a practical point of view.  相似文献   

6.
This paper proposes a wireless power transfer system using a series compensator GCSC (gate‐controlled series capacitor) as a primary side capacitor. The GCSC is a circuit module that functions as a series variable capacitor by controlling semiconductor switches. The advantage of applying the GCSC to the primary side capacitor is that it provides controllability of the output power factor for a high‐frequency inverter. Therefore, optimum operation of the high‐frequency inverter can be achieved irrespective of the coil parameters by controlling the output power factor. Experimental results with a 1 kW laboratory prototype confirmed that the proposed system can achieve optimum operation and high efficiencies of the high‐frequency inverter.  相似文献   

7.
This paper considers an improved bidirectional zero-current switching (ZCS) quasi-resonant-type single-ended soft-switching mode dc/dc converter with an HF center-tapped transformer link and ZCS commutated diode rectifier which is capable of minimizing switching losses of a power device, its electrical stresses and electromagnetic interference (EMI/RFI) noises. This converter topology can operate efficiently under a simple frequency-regulation strategy in the ultrasonic frequency ranges. The advanced exact computer-aided simulating analysis of the new converter circuit is presented introducing the normalized frequency variable and circuit system parameters. The open-loop/closed-loop steady-state voltage regulation characteristics in a variable frequency-modulation mode are illustrated and discussed in the normalized general-purpose expressions in addition to the load variation performance. The feasible high-power density SMPS breadboard with a full-wave quasi-current resonant switch assembly using a single MOS-gate switching power semiconductor device is originally developed and investigated, and is optimally designed for a distributed low-voltage large-current power supply system. Its experimental results in the PFM control implementation are demonstrated compared with the exact simulation ones from a practical viewpoint.  相似文献   

8.
The purpose of this paper is to improve power conversion efficiency of a three‐phase voltage source type soft‐switching inverter with a single auxiliary resonant DC link (ARDCL) snubber. First, the operating principle of an ARDCL snubber discussed here is described. Second, this paper proposes an effective pulse pattern generation method of the zero voltage space vector of the three‐phase soft‐switching inverter using IGBTs or power modules that can reduce power losses in the ARDCL snubber treated here. In particular, a zero voltage holding interval in the DC rail busline of this three‐phase soft‐switching inverter is to be regulated according to the generation method of the zero voltage space vector. Third, the maximum modulation depth Mmax under the condition of correction of the instantaneous voltage space vector can be improved by using a new zero voltage space vector generation method. Finally, the feasible experimental results of this inverter are obtained confirming the operating characteristics such as power conversion actual efficiency, as well as conventional efficiency THD and RMS value of the balanced three‐phase output voltage for an experimentally built three‐phase voltage source type soft‐switching pulse modulated inverter using the latest IGBT modules and evaluated from the standpoint of practical applications in industry UPS and new energy systems. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(1): 89–99, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10234  相似文献   

9.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

10.
High‐frequency alternating current has an extensive application as a result of outstanding advantages. The aim of the study is to develop a high‐frequency power source to feed the auxiliary loads of vehicle application such as electric fans, blower motors, and lighting. A feasible implementation of high‐frequency power source is examined by a full‐bridge LCLC resonant inverter. The corresponding control scheme is proposed for the fourth‐order resonant inverter to confront the control challenges of low output harmonics and dynamic nonlinear load. Firstly, an analysis parameter S r is defined to address the possible impacts of the varying operational frequency to output THD and ZVS features. Secondly, an integrated control scheme is presented to implement pulse‐width control at heavy load and frequency regulation at light load. Lastly, an experimental prototype is accomplished with the peak voltage of 35 V and the output power of 120 W. The accordance of experimental results and theoretical analysis testifies that the proposed control scheme can achieve the low harmonics and high conversion efficiency over a wide scope of operational conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a new power decoupling method for a high‐frequency cycloconverter which converts the single‐phase line‐frequency ac input to the high‐frequency ac output directly. The cycloconverter consists of two half‐bridge inverters, two input filter capacitors, and a series‐resonant circuit. The proposed power decoupling method stores the input power ripple at double the line frequency in the filter capacitors. Therefore, the proposed method achieves a unity power factor in ac input and a constant current amplitude in the high‐frequency output without any additional switching device or energy storage element. This paper theoretically discusses the principle and operating performance of the proposed power decoupling method, and the viability is confirmed by using an experimental isolated ac‐to‐dc converter based on the high‐frequency cycloconverter. As a result, the proposed power decoupling method effectively improved the displacement power factor in the line current to more than 0.99 and reduced the output voltage ripple to 4% without any electrolytic capacitor.  相似文献   

12.
This paper proposes a new sensorless vector control method for salient‐pole permanent‐magnet synchronous motors. In regard to rotor phase estimation, the sensorless vector control method is characterized by a new high‐frequency voltage injection method distinguished from the conventional ones by a unique ellipse shape of the spatial rotation, and by a new PLL method whose input is a high‐frequency current autocorrelated signal. The new vector control method established by two innovative technologies can have the following high‐performance and attractive features: (1) it can allow 250% rated torque at standstill; (2) it can operate from zero to the rated speed under the rated motoring or regenerating load; (3) it accepts instant injection of the rated load even for zero‐speed control; (4) it accommodates a load with huge moment of inertia; (5) phase estimation is very robust against inverter dead time; (6) the computational load for estimating rotor phase is very small, would be the smallest among the methods with comparable performance. This paper presents the new vector control method by focusing on two innovative technologies from its principles to design rules. Usefulness of the new vector control method is verified through extensive experiments. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 164(4): 62–77, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20632  相似文献   

13.
Recently, high‐voltage motor direct drive systems have been put to practical use, and various multilevel PWM strategies have also been proposed. This paper describes a multilevel PWM strategy [our group calls it the Carrier Phase Selection Method (CPS)] that has the lowest line voltage harmonic distortion in order to prevent the degradation of high‐voltage motor winding insulations. This method takes the adverse effect of dead time into consideration, and it controls the shift direction of a carrier phase. Therefore, a favorable output waveform without instantaneous voltage surges is achieved even if the line voltage level changes. Moreover, the switching transitions across all switching devices are well‐balanced, so the utilization of inverter unit cells is equalized. This is an important factor when designing the entire system. Based on simulation and experimental results, it is shown that this CPS method is particularly effective in high‐voltage motor direct drive systems. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 165(2): 77–88, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20474  相似文献   

14.
A new Cockcroft–Walton (CW)‐type high‐voltage DC generator with RF air‐core transformer used as a step‐up transformer has been developed. The design concept of the air‐core transformer is shown, which is operated on the resonance condition between the inductance of the secondary coil and the stray capacitance of CW circuit with the conical‐type coil structure. Adapting the RF air‐core transformer to CW circuit with DC‐300 kV 100 mA, excellent performances have been demonstrated. In the new CW circuit, it results in downsizing of capacitors to operate at higher frequency than conventional ones, and reduction of the volume by approximately 40% has been shown in the typical DC generator with 1 MV 100 mA. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 160(1): 18–26, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20500  相似文献   

15.
Using circuit theory, this letter investigates the output voltage characteristics of three‐coil inductive power transfer (IPT) system against load variations and determines the operating frequency to achieve a constant output voltage. First, a three‐coil IPT system is modeled, and the analytical expression of the root‐mean‐square of the output voltage is derived. By substituting the coupling coefficient, the quality factor, and the resonant frequency, we propose an intuitive method of calculating the frequency for load‐independent output voltage for the first time. When the coupling coefficient is relatively small, there are three frequencies that achieve load‐independent output voltage. If the coupling coefficient increases and is greater than , only two frequencies can achieve load‐independent output voltage. Experiments are conducted to confirm these conclusions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
High‐power utility interactive inverters used for large‐capacity energy storage systems are composed of multiple connected inverters, in order to realize high efficiency and high performance of the harmonic elimination characteristic simultaneously. Some disadvantages of multiple connected inverters, such as harmonic current flowing from an inverter unit to the other one, and increase of the number of inverter units, cannot be overcome easily. This paper presents a novel strategy for a high‐power utility interactive inverter, which is composed of a large power with low‐switching‐frequency PWM inverter (high‐power PWM inverter), an LC passive filter, and a series active filter (series AF). Because harmonic components contained in the utility line current are absorbed by the series AF, the switching frequency of the PWM inverter can be selected to about 1 kHz. In addition because the power capacity and the output voltage of the series AF can be suppressed lower than 10% of the power capacity and the output voltage of PWM inverter, low‐voltage and high‐speed power devices can be applied to the series AF. Consequently, high power, high efficiency, and high harmonics elimination performance can be realized without increasing the number of inverter units. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(2): 57–66, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10048  相似文献   

17.
This paper proposes a new generalized high‐frequency voltage injection method for sensorless drive of salient‐pole permanent‐magnet synchronous motors. The injected high‐frequency voltage has a unique spatially‐rotating elliptical shape, with the amplitudes of both the major and minor axes varying with the motor speed, and can be designed by selecting a design parameter. The high‐frequency current caused by the injected voltage, which has information on the rotor phase to be estimated, is speed‐independent, that is, is not affected by the motor speed at all. Consequently, the rotor phase can be estimated in a wide speed range from zero to the rated speed. By selection of the design parameter, the properties of the high‐frequency current can be adjusted appropriately to the associated motor‐drive system consisting of a motor and an inverter. As a versatile phase estimation method for estimating rotor phase using the high‐frequency current, the “mirror‐phase estimation method” is reconstructed and reproposed. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 168(3): 67–82, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20803  相似文献   

18.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes a constant DC voltage control‐based strategy for an active power quality compensator (APQC) used in electrified railways. The proposed strategy consists of only an I‐PD‐based constant DC capacitor voltage control with an added moving‐average type low‐pass filter (LPF). The added LPF improves the response of the constant DC capacitor voltage control for the APQC. Thus we offer the simplest control method for the APQC used in electrified railways with improved response. The basic principle of the proposed control strategy is discussed in detail, and then confirmed by digital computer simulation using the PSIM software. A prototype experimental model is constructed and tested. Experimental results demonstrate that balanced source currents with unity power factor are obtained on the primary side of the Scott transformer in the traction substation systems, improving the response by one‐fourth as compared to that of the previously proposed control method. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号