首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This study extends the upstream flux‐splitting finite‐volume (UFF) scheme to shallow water equations with source terms. Coupling the hydrostatic reconstruction method (HRM) with the UFF scheme achieves a resultant numerical scheme that adequately balances flux gradients and source terms. The proposed scheme is validated in three benchmark problems and applied to flood flows in the natural/irregular river with bridge pier obstructions. The results of the simulations are in satisfactory agreement with the available analytical solutions, experimental data and field measurements. Comparisons of the present results with those obtained by the surface gradient method (SGM) demonstrate the superior stability and higher accuracy of the HRM. The stability test results also show that the HRM requires less CPU time (up to 60%) than the SGM. The proposed well‐balanced UFF scheme is accurate, stable and efficient to solve flow problems involving irregular bed topography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
A Godunov method is proposed for the computation of open‐channel flows in conditions of rapid bed erosion and intense sediment transport. Generalized shallow water equations govern the evolution of three distinct interfaces: the water free‐surface, the boundary between pure water and a sediment transport layer, and the morphodynamic bottom profile. Based on the HLL scheme of Harten, Lax and Van Leer (1983), a finite volume numerical solver is constructed, then extended to second‐order accuracy using Strang splitting and MUSCL extrapolation. Lateralisation of the momentum flux is adopted to handle the non‐conservative product associated with bottom slope. Computational results for erosional dam‐break waves are compared with experimental measurements and semi‐analytical Riemann solutions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A monotone, second‐order accurate numerical scheme is presented for solving the differential form of the adjoint shallow‐water equations in generalized two‐dimensional coordinates. Fluctuation‐splitting is utilized to achieve a high‐resolution solution of the equations in primitive form. One‐step and two‐step schemes are presented and shown to achieve solutions of similarly high accuracy in one dimension. However, the two‐step method is shown to yield more accurate solutions to problems in which unsteady wave speeds are present. In two dimensions, the two‐step scheme is tested in the context of two parameter identification problems, and it is shown to accurately transmit the information needed to identify unknown forcing parameters based on measurements of the system response. The first problem involves the identification of an upstream flood hydrograph based on downstream depth measurements. The second problem involves the identification of a long wave state in the far‐field based on near‐field depth measurements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the numerical solution of the 1D shallow‐water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow‐water equations are presented. These equations model the free‐surface flows in a river. This set of equations is widely used for applications: dam‐break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non‐conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left‐hand side of the equation of momentum and the non‐conservative part is introduced as a source term on the right‐hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam‐break wave simulation. A real dam‐break wave simulation will be shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume‐integrated average (VIA) for each mesh cell, the surface‐integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi‐Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux‐based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non‐oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A semi‐implicit finite volume model based upon staggered grid is presented for solving shallow water equation. The model employs a time‐splitting scheme that uses a predictor–corrector method for the advection term. The fluxes are calculated based on a Riemann solver in the prediction step and a downwind scheme in the correction step. A simple TVD scheme is employed for shock capturing purposes in which the Minmond limiter is used for flux functions. As a consequence of using staggered grid, an ADI method is adopted for solving the discretized equations for 2‐D problems. Several 1‐D and 2‐D flows have been modeled with satisfactory results when compared with analytical and experimental test cases. The model is also capable of simulating supercritical as well as subcritical flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A volume of fluid (VOF) method is developed combining a first‐order limited downwind scheme with higher order accurate schemes. The method is characterized by retaining a sharp fluid interface and a reduction in numerical diffusion near the interface, but avoids complicated geometrical reconstruction as occurs in most volume tracing algorithms. To demonstrate the accuracy and robustness of the method, a selection of numerical experiments are presented involving a pure advection problem, a water wave impact caused by a dam breaking and liquid sloshing in a partially filled tank. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Third‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper first applies a flux vector‐type splitting method based on the numerical speed of sound for computing incompressible single and multifluid flows. Here, a preconditioning matrix based on Chorin's artificial compressibility concept is used to modify the incompressible multifluid Navier–Stokes equations to be hyperbolic and density or volume fraction‐independent. The current approach can reduce eigenvalues disparity induced from density or volume fraction ratios and enhance numerical stability. Also, a simple convection‐pressure flux‐splitting method with high‐order essentially nonoscillatory‐type primitive variable extrapolations coupled with monotone upstream‐centered schemes for conservation laws‐type volume fraction recompressed reconstruction is used to maintain the preservation of sharp interface evolutions in multifluid flow simulations. Benchmark tests including a solid rotation test of a notched two‐dimensional cylinder, the evolution of spiral and rotational shapes of deformable circles, a dam breaking problem, and the Rayleigh–Taylor instability were chosen to validate the current incompressible multifluid methodology. An incompressible driven cavity was also chosen to check the robustness of the proposed method on the computation of single fluid incompressible flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical model for solving the 2D shallow water equations is proposed herewith. This model is based on a finite volume technique in a generalized co‐ordinate system, coupled with a semi‐implicit splitting algorithm in which a Helmholtz equation is used for the surface elevation. Several benchmark problems have proven the good accuracy of this method in complex geometries. Nevertheless, several numerical perturbations were noted in the surface elevation. After finding the origin, a new numerical technique is suggested, to avoid these perturbations. Several severe tests are proposed to validate this technique. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensional scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of the second‐order finite volume scheme for this equation, paying special attention to the reduction of the method to first order as a particular case. The explicit first and second order in space upwind finite volume schemes are analysed to provide an understanding of the stability constraints, making emphasis in the numerical conservation and in the preservation of the positivity property of the solution when necessary in the presence of source terms. The time step requirements for stability are defined at the cell edges, related with the traditional Courant–Friedrichs–Lewy (CFL) condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Flooding due to the failure of a dam or dyke has potentially disastrous consequences. This paper presents a Godunov‐type finite volume solver of the shallow water equations based on dynamically adaptive quadtree grids. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) scheme is used to evaluate interface fluxes in both wet‐ and dry‐bed applications. The numerical model is validated against results from alternative numerical models for idealized circular and rectangular dam breaks. Close agreement is achieved with experimental measurements from the CADAM dam break test and data from a laboratory dyke break undertaken at Delft University of Technology. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

18.
In this paper, we present a discontinuous Galerkin formulation of the shallow‐water equations. An orthogonal basis is used for the spatial discretization and an explicit Runge–Kutta scheme is used for time discretization. Some results of second‐order anisotropic adaptive calculations are presented for dam breaking problems. The adaptive procedure uses an error indicator that concentrates the computational effort near discontinuities like hydraulic jumps. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper introduces a stable flux‐splitting solver for one‐dimensional (1D) shallow water equations. This solver is specifically designed to satisfy a strengthened consistency condition for stationary solutions that ensures the stability and accuracy of the scheme. It applies to channels with variable depth and width, including terms modelling friction at bottom and vertical walls. Some numerical tests by comparison to both analytical solutions and experimental measurements show the good performances of the scheme. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号