首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large span transition section at Badaling Great Wall Station with a maximum excavation span of 32.7 m and an excavation area of 494.4 m2 is the traffic tunnel with the largest excavation span and excavation section area in the world, resulting in substantial construction difficulty and high safety risk. To ensure the construction safety of Badaling Great Wall Station, the support parameter design, a new excavation method, and the surrounding rock deformation control principle for tunnels with an ultra large section are studied. The study results show that: (1) According to the checking calculation, the support system had a safety factor of 1.16-2.46 during the construction period and 1.59-3.54 during the operation period, i.e., its engineering structure is safe and reliable. (2) The innovative triangle type excavation applied to the tunnel with an ultra large span and section has the advantages of a simple and clear method, safe and reliable structure, high applicability of mechanical equipment and high construction efficiency. (3) Depending on different surrounding rock classes and spans, the criteria for total deformation control of the large span transition section at Badaling Great Wall Station are as follows: in the case of class Ⅱ surrounding rock, the total settlement is 20-30 mm, and the total horizontal convergence is 15-20 mm; in the case of class Ⅲ surrounding rock, the total settlement is 30-40 mm, and the total horizontal convergence is 20-25 mm; in the case of class Ⅳ surrounding rock, the total settlement is 60-90 mm, and the total horizontal convergence is 40-55 mm; in the case of class Ⅴ surrounding rock, the total settlement is 130-190 mm, and the total horizontal convergence is 90-105 mm. (4) According to the numerical simulation, the innovative triangle type excavation method results in deformation that is mainly centralized in the tunnel arch making stage, accounting for approximately 95% of the total, followed by deformation in the side making stage, accounting for 4% of the total, with the smallest deformation only accounting for 1% in the inverted arch making stage.  相似文献   

2.
To ensure the safe, rapid and high quality construction of Zhengzhou Wanzhou High speed Railway, a series of exploration and innovation of construction technology, structural design and information management under the condition of large scale mechanization is used in the whole construction process. The technology includes: (1)A set of advanced geological prediction, advanced pre reinforcement technology of excavation face, mechanized construction technology of primary support, wide waterproof board trolley operation technology and intelligentized full face lining trolley of large scale mechanized construction technology are formed. (2)A classification method of surrounding rock stability is established based on the mechanized construction technology, and the design parameters of the tunnel support structure are optimized under the guidance of New Austria Tunneling Method. (3)To realize informatized management of tunnel construction, the tunnel construction management system, construction information record system, construction safety management system, quality management system of concrete mixing station and quality credit evaluation system are established. Finally, on the basis of mechanized and informatized construction, exploration and outlook of the tunnel intelligentized construction technology are given from the aspects of the dynamic intelligentized design system of tunnel support system, the intelligentized robot construction technology of tunnel support system and the intelligentized monitoring system of tunnel structure, to promote China′s tunnel construction technology.  相似文献   

3.
Shenzhen Zhongshan River crossing Link is the first super integrated project in the world that consists of four different types of structures, i.e. ultra long and wide immersed tunnels, super large span sea crossing bridges, deep water artificial islands and undersea interchanges. The river crossing is designed for two way and 8 lane as per highway technical standards. Based on project characteristics and its technical difficulties, engineering solutions and the associated technology innovations have been listed as follows: (1) Proposed a design concept of standardization, industrialization, intelligence and project integration, and completed the study of overall design of Shenzhen Zhongshan River Crossing Link. An immersed tunnel with a combined steel shell and concrete composite structure is designed and the width of tunnel elements is from 46 to 55.5 m; Lingdingyang Bridge has been designed as a suspension bridge with a 1 666 m main span and two 270 m high main bridge towers. For West Island, a temporary enclosure caisson structure made of ultra large steel cylinders with a diameter of 28 m is designed to achieve a rapid artificial island formation. (2) Summarized the design and construction solutions related to combined steel shell and concrete structural immersed tunnel, the mix design, batching and concrete casting methods of high strength self compacting fluidized concrete, concrete quality check and inspection, design and construction of deep cement mixed (DCM) pile foundation for immersed tunnels, design and construction of large scale undersea dimensional transport interchange, flutter and wind stability design for super large span suspension bridge with monobox girders, and key techniques related to design and construction of offshore anchorage in deep sea. Furthermore, an equipment is developed and innovated for not only transport, also for installation of immersed tunnel elements to ensure the implementation of the project in an effective and economical way.  相似文献   

4.
A sea crossing tunnel is generally large in scale, having a complex site environment, and lack of engineering experience. The success of the project is directly related to the design plan. At present, no metro sea crossing tunnel havd been built in mainland, and the design standard and technology of the sea crossing tunnel are not studied throughly. The key technology of long and large sea crossing metro tunnel design, including construction method selection, cross section design, waterproofing and drainage system design, response to complex environment in sea area, durability design, ventilation and evacuation are analyzd with methods of geological analysis, engineering analogy and comprehensive comparison based on the sea crossing tunnel of Xiamen Rail Transit Line 3. A combination of shield and mining methods is proposed for the geological conditions of different sections. The drainage system of the mining section can be maintained by applying advanced grouting to control displacement. The complex geology of the sea area is considered in the targeted design, including a deep weathering trough, a water rich sand layer, a hard rock and uneven stratum, and the development of solitary rocks. The durability design of the tunnel structure and the limit of the bearing capacity are treated equally to consider safety reserve. The tunnel adopts sectioned longitudinal ventilation and smoke extraction mode, and contains ventilation shafts and civil smoke extraction air shafts on shore to prevent disasters. The conclusions can provide technical support for tunnel scheme decision and reference for similar projects.  相似文献   

5.
Confronted with accidents in a shallow?buried weak tunnel using the bench excavation method,such as great subsidence and cracks in the ground surface as well as those in the preliminary support,a double downside drifts construction method was presented The drifts were used to detect geological conditions and reinforce the lower parts of the tunnel Its construction procedures and load transiting mechanism were then described Its Construction behavior was also studied by numerical simulation using software MIDAS The results show that (1) double-side drifts can improve tunnel load,the key construction step is arch ring excavation and core soil is good to keep tunnel steady; (2) weak parts mainly l ocate at wall foot of drifts,wall foot and crown foot of tunnel,and the connections; (3) reinforcement of soil under the drifts has no apparent effect on improving rock deformation and support load Advice on construction was proposed that main parts to be reinforced are drifts (its foot depth,connection parts with tunnel,and its corners) and core soil should be kept if rock is unsteady and needs reinforcing  相似文献   

6.
In recent years, with the help of good national policy support, the design, manufacturing and construction technology for tunnel boring machine (TBM) in China have been greatly improved; but compared with foreign relatively proven technology, there is still a certain gap for domestic technology development and engineering application. Based on the situation analysis of research and application of TBM in China and abroad, the research work for TBM design is carried out according to the complex geological conditions of Gaoligongshan Tunnel on Dali Ruili Railway as follows. (1) The prototype disc cutter rock breaking and scaled disc cutter wearing experiment are carried out to provide reference for adaptable design of TBM cutterhead and key parameter calculation. (2) The TBM design scheme is discussed from the aspects of high efficiency rock breaking of cutters and cutterhead, TBM over excavation, integrated support system, etc. (3) Two kinds of advanced geological prediction technology, i.e. HSP method and RTP method, are researched. The study results can provide reference for design and manufacture of TBM with high adaptability in complex geology and construction application in Gaoligongshan Tunnel.  相似文献   

7.
The large testing platform for immersed tunnel is established to analyze the distribution laws of the temperature field and its influencing factors when a tunnel fire breaks out. Meanwhile, the combination method of physical testing (1∶1 full scale fire test) and numerical calculation FDS are applied. Some conclusions are drawn as follows: (1) Longitudinal wind speed within limits can decrease the maximum temperature of tunnel crown top effectively when fire breaks out in tunnel. (2) The maximum temperature of tunnel crown top and fire behavior are related to fire types obviously. (3) The high temperature resistance safe position of the tunnel equipment is below 3.5 m of tunnel sidewall in case of fire source heat quantity of 50 MW. (4) The fire maximum temperature is positively related to heat release rate (HRR) and longitudinal wind speed.  相似文献   

8.
LI Ning  LI Guoliang 《隧道建设》2018,38(3):481-493
Lanzhou Chongqing Railway is located in the uplift margin of the Tibetan Plateau, where the geological environment is very complicated and special. Based on numerical analysis and field tests, the physical and mechanical properties, micro structure, and complicated water related stability of the Tertiary sandstone are studied. A comprehensive dewatering system integrating deep surface wells and vacuum light well points in tunnel is used and the construction technique featured with advance reinforcement by horizontal jet grouting for the full face of aquiferous silty fine sand tunnels is invented to solve the problem of the Tertiary quick sand. In addition, the classification method for deformation potentiality in design and dynamic adjustment in construction of tunnels in high geostress soft rock is established, the deformation control technology combining active stress release and passive control according to the deformation mechanism is developed, an automatic real time monitoring system for operation is invented, and a complete technological system of design, construction, and operation management of soft rock tunnels is built. Moreover, the TBM equipment parameter design principles are put forward, the parallel lining and multi stage belt conveyor mucking system is researched, the phased ventilation technology is invented and thus the problem of safe and fast long distance construction by large diameter TBMs is solved. The technological achievements have filled in gaps and facilitated development of the tunnel construction technology.  相似文献   

9.
Water Supply Project in the Central City of Jilin Province is a large scale project which involves complex geological condition and high technical difficulties. In order to maximize the water delivery, the overlength pressure hydraulic tunnel is introduced. Based on detailed geological survey and other reliable technical references, this project can be treated as a demonstration in terms of how to lay large diameter TBM through a karst area with limestone. The in situ test is introduced to test the non bonded pre stress circumferential anchor tunnel structure and culvert structure when the water transmission engineering line crosses the shallow buried valley section. The Class Ⅰ and Class Ⅱ granite tunnels excavated by TBM is not aligned with saving project investment and speeding up construction progress. The BQ method is introduced to analyze the rock quality classification of long tunnels. There are not many domestic engineering examples of the above mentioned key technologies, and there are no mature theories and experiences to refer to. Based on theoretical research, numerical calculations, model tests, and productive in situ tests, those key technical problems of ultra long and pressurized tunnels are solved. This project has a great theoretical and engineering value.  相似文献   

10.
Tsinghuayuan Tunnel of Beijing Zhangjiakou High speed Railway is the first fully prefabricated high speed railway tunnel in China. The supporting structure, subrail structure, and subsidiary structure of Tsinghuayuan Tunnel are all prefabricated in the factory. The strength, deformation and stability of subrail structure are analyzed by numerical simulation method; a kind of three block type of subrail prefabricated structure is put forward according to prefabricated assembling technology; and the subrail space is used to ventilate and rescue under the stability condition. The connection between subrail structure and shield segment is the key to fully prefabricated assembling technology. By introducing the grouting technology and construction keys of subrail structure, the stress on subrail structure and shield segment can be balanced. The results can provide reference for similar projects in the future.  相似文献   

11.
SUN Jun 《隧道建设》2018,38(10):1592-1602
The author explains why a giant undersea immersed tube tunnel was selected for the sea area of the main channel of the east side of the Hong Kong Zhuhai Macao Fixed Link Project, instead of employing a bridge or shield tunnel; and summarizes several domestic and international leading innovative technologies applied in the island tunnel construction of the Hong Kong Zhuhai Macao Fixed Link Project, including the use of huge self stabilized steel cylinders as retaining structure of foundation pits for constructing the artificial islands, the large area and ultra deep "sand compaction pile (SCP) composite foundation" reinforcement technology, "semi rigid segment joints", "sandwich" steel RC combined inverted trapezoid closure joints, and crack control and anti corrosion/durability design for RC tube structure. All these technologies reflect Chinese wisdom and Chinese speed. The author also points out some technical issues to which attention should be paid after the immersed tube tunnel of the project is put into operation: (1) Will the post construction settlement and differential settlement of the immersed tube tunnel further develop after the project is open to traffic? How much is the final convergence value? If it exceeds the limit, what control measures should be taken?(2) How to deal with the issue that the joints of large/small elements or segments are open? How to ensure that all the large and small joints between segments of the tube are "watertight"? Furthermore, the author presents some suggestions and control measures: (1) For excessive post construction settlement (especially differential settlement) spotted on large joints, it is suggested to incorporate "micro disturbance grouting" for post treatment. (2) If a joint opens under the excessive positive bending moment at the floor slab, it is believed that the open joint on the floor slab can be closed again by cutting off some prestressed tendons in the roof slab of the segment to reduce the positive bending moment of the section.  相似文献   

12.
With reference to the construction conditions and features of metro tunnels, the design features of double shield TBMs are analyzed and key issues to be considered and settled when a double shield TBMs is used for metro tunnel construction are proposed. The issues include cutterhead′s rock breaking capacity, small curve excavation, selection of backfill grouting technology and jamming prevention and release function in fault and fracture zone, etc., which all have a direct effect on the geological adaptability, tunnel lining quality and tunneling performance of double shield TBMs. Subsequently, the specific design and optimization scheme, which includes the design of cutterhead thick steel plates, tapered shield, monorail hoist and pea gravel backfill and cement slurry grouting, etc., are studied. The success of double shield TBMs in Shenzhen Metro project well proved its remarkable geological adaptability and advantages in efficient mechanized construction.  相似文献   

13.
The cross sea channel for the Qiongzhou Strait not only provides a solution for transportation, but also plays an important role in the political and economic development of the region. In addition, the project has an extensive impact on many fields, such as energy, national defense, science and technology, opening up and reform, comprehensive utilization and so on. It is a significant project to enhance China′s comprehensive national strength, defend the country′s territorial integrity and promote regional economic development. The geological conditions across the Qiongzhou Strait are complex. A large amount of existing engineering geological information and hydrogeological data are collected, based on which the seismic impact on subsea tunnels and the main geological conditions including tectonic structures are analyzed. Different options crossing the Qiongzhou Strait have been considered and compared in terms of engineering geology, environmental condition, as well as the construction feasibility. The analystical results indicate that a subsea tunnel has more advantages over a bridge. Because more complicated technical difficulties have to be solved for a highway tunnel which would potentially increase construction and operation costs, a railway tunnel scheme is recommended. Vehicles can be carried by trains through the Qiongzhou Strait railway tunnel. Based on the seabed topography and geological conditions, four preliminary railway tunnel routes are proposed. After a comprehensive comparative analysis, the railway tunnel route Ⅱ is identified to be superior to other alternatives and should be the basis for determining the final tunnel layout. The proposed tunnel cross section includes two railway tunnels and one service tunnel. All the three tunnels have the same structural form and dimension and will be constructed by shield.  相似文献   

14.
YAN Jinxiu 《隧道建设》2019,39(4):537-544
In this paper, the current situation of tunnel engineering in China is introduced, especially the achievements obtained in the field of tunnel construction since the reform and opening up over 40 years. The 34 708 km long traffic tunnel built after reform and opening up takes 96% of the total length. The challenges met and achievements obtained during the key tunnel projects construction in China are presented emphatically from the aspects of extra long tunnel, deep tunnel, large tunnel, tunnel at high altitude and tunnel in complex environment. It is pointed out that: the main technological challenges during extra long tunnel construction are the accuracy of geological investigation, rapid construction and running disaster prevention; the main challenges during deep tunnel construction are high geostress, high waterpressure and high geothermal; the large tunnel faces high design and construction challenges; the challenges during tunnel construction at high altitude are freezing thawing and hypoxia; but still, many tunnels have been built under complex environments, including karst, gas, high geostress, high waterpressure, expansive rock, etc., and many technological breakthroughs have been achieved. The development trend of tunnel projects in China is proposed from the aspects of investigation, design, construction and operation, turning the development speed into development quality. It is generally acknowledged that the tunnel engineering achievements in China over the past 40 years benefit significantly from the development of international tunnel technology. Meanwhile, the development of tunneling technology in China has also greatly contributed to the international tunnel engineering development.  相似文献   

15.
For the water conveyance tunnels in the long distance water diversion projects constructed or planned in China, most of them have to pass through mountain areas with complex geological conditions, due to the constraints of route selection. These tunnels might face engineering problems such as harsh natural environment, high seismic intensity and steep terrain, leading to difficulties in construction and high operational risks. In this paper, some key technical issues on the construction of ultra long deep buried water conveyance tunnels under complex geological conditions are summarized into 5 aspects, namely, (1) exploration and testing techniques for deep buried tunnels, (2) prediction and prevention for large deformation and rock burst in the surrounding rock masses, (3) failure mechanism and anti faulting techniques of the surrounding rock masses and lining for tunnels crossing active faults, (4) synergistic load bearing mechanism and life cycle design theory for rock support system of deep buried tunnels, (5) disaster treatment for deep and long tunnels such as prevention of high pressure water inrush. The scientific and technical problems to be solved and their development directions are pointed out, which can provide some reference for engineering construction of ultra long deep buried tunnels.  相似文献   

16.
DING Hao  CHENG Liang  LI Ke 《隧道建设》2019,39(6):901-912
Construction of submerged floating tunnel (SFT) is one of the major solutions for fjord crossing projects and deep sea crossing projects in the future. Aimed to solve the key problems in SFT construction, the authors present an overview on the progress of the researches made in China and other countries in recent years on cross section of SFT, dynamic response of SFT segment structure, vortex induced vibration of anchor cable, testing technique and applicability of SFT, summarize the critical problems in the dynamic response research of SFT structures and make prospect on the trend of further SFT research. Conclusions are drawn as follow: (1) In the aspect of cross section design, SFT with ear shaped or elliptical cross section has good stability in the complex environment of flowing water, with factors comprehensively considered, such as cross section of SFT segment structures, buoyancy weight ratio and layout. (2) In the aspect of dynamic response of structures and anchor cables, the current research methods are mainly based on theoretical derivation and numerical simulation, and poorly rely on model based testing technique; therefore, it is necessary to perform model tests under combined loads from the environment, traffic and SFT, for mutual check between the theoretical analysis and numerical model. (3) In the aspect of applicability, it is necessary to build small SFT in feasible water conditions to make research on the physical SFT in the static waters, to identify problems and to lay a foundation technically for building large SFTs in the complex sea conditions.  相似文献   

17.
The GIL chamber in the utility tunnel under Tanxinpei Road in Wuhan is an ultra long closed structure. Heat exhaust ventilation is the controlling problem in engineering design for the project, especially the heat transfer between the tunnel and the surrounding soil in the long term. A one dimensional model for the GIL chamber is established by using the IDA tunnel simulation software to analyze the short term and long term heat exhaust, respectively. The short term heat exhaust is analyzed for the typical climate of summer/winter/transitional seasons and the long term analysis is carried out under the seasonal changes in 1 year/ 10 years/ 30 years. The short term analysis results indicate that the slope of the utility tunnel and the temperature gradient lead to lower ventilation efficiency in certain areas. The long term analysis results show that the air temperature in the GIL chamber and the wall temperature rise most pronouncedly during the first 5-6 years of operation and remain stable for the remaining time within 30 years. It also is found that around 10%-40% of the heat is released to the surrounding soil. A three dimensional model of the GIL chamber is established using the fluid mechanics based program, OpenFOAM, for 3D simulation. The effects of cables and brackets on the temperature and velocity fields in the chamber are analyzed. The effect of non uniformity of velocity distribution and the stack effect on the temperature distribution in the GIL chamber are revealed. The results can provide some reference for the design and specification revision of heat exhaust ventilation for similar utility tunnels in the future.  相似文献   

18.
The large scale diversion tunnel of Baihetan Hydropower Station has complex geological conditions, thus various problems of rock mechanics appeared during the process of excavation. Typical damage and fracture mechanics are analyzed in depth, including the collapse along weak rock joint, stress controlled spalling, failure modes of fractured rock mass, relaxation damage of fractured rock columnar joints, localized stress affected by structural surfaces and stress controlled problems of superior fracture combinations. Engineering countermeasures are also summarised, which includes supporting measures, construction methods, supporting time, and monitoring and feedback methods for different types of failure. Through these measures, rock mechanics problems are successfully solved. Stability control of the surrounding rock of underground caverns under complicated geological conditions are achieved, ensuring successful completion of the enormous diversion tunnel of Baihetan.   相似文献   

19.
In order to deal with the technical problems of Shuangfeng Tunnel passing through water rich Tertiary sandy mudstone strata with long distance and big overburden, such as dewatering, advance reinforcement, structural design and construction method etc., reducing tunnel deformation, preventing water inrush, gushing mud and tunnel collapse, the technical route of "stereo exploration, pressure reduction by water releasing, pre grouting, supporting timely, overall monitoring" is established after the field test and data analysis. Methods of full dimensional exploration and water pressure reducing are proposed, which form the preceding reinforcing technology that are different between inside the excavation contour and outside the excavation contour. Support linings are constructed immediately after excavation of upper bench. Safety performance of tunnel structure is evaluated according to the monitoring results. The research is conducted based on Shuangfeng Tunnel and the study results are applied in the construction of the tunnel. Results indicate that it can make sense to control deformation and ensure safety by using methods of reducing pressure through full dimensional water release, adopting advance reinforcement measures that are different between inside the excavation contour and outside the excavation contour, proposing mini bench method during tunnel construction and supporting timely after excavation for tunnels passing through water rich Tertiary sandy mudstone strata.  相似文献   

20.
Shenzhen Chunfeng Tunnel is one of the shield tunnels under construction with the largest diameter in mainland of China. The whole tunnel passes through the coastal composite stratum, with rock from broken to integral, and the strength of some sections reaches 173 MPa. The tunnel under crosses the railway, subway, bridge and multiple buildings closely in a complex and sensitive environment. Combining the stratum situation and characteristics of large diameter shield machine, the problems that will be faced during the construction process, including low rock breaking efficiency of shield machine, discharge stagnation and jamming of the chamber, settlement control in sensitive environment, and impact of large diameter shield segment floating, cracking and construction on urban traffic, are analyzed. Based on the engineering experience, the following solutions are proposed: a shield rock breaking efficiency solution for the complete extremely hard rock section, settlement control measures for adjacent buildings and structures of shield driven tunnels, solutions for jamming and discharge stagnation of large diameter slurry shield, comprehensive measures for prevention and control of shield segment floating and cracking, and a slag treatment plan for downtown areas. Chunfeng Tunnel tests the wisdom of Chinese builders with its tremendous volume and strict construction standards, and it also has certain reference significance for other similar projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号